Skip to main content

Nanomaterials in medicine

Laboratory of Experimental Medicine
Junior research group

The field of nanomaterials in medicine (often labelled as nanomedicine), covers many types of nanomaterials of various structures or morphologies, and advanced mostly optical or electrochemical techniques optimized to provide early diagnostics and more efficient and frequently personalized therapies for many severe diseases. Nanomaterials enhance the possibilities of medical therapy and diagnostics in many aspects: i) nanomaterials can be used to image specific regions via their fluorescence or plasmonic properties so they can be applied in the analysis of diseases directly inside the human body. II) nanomaterials can be used as efficient active drug delivery systems. In many cases, it is possible to apply the nanomaterials as theranostic agents allowing to monitor the effect of a drug in vivo.

It is commonly recognized that there is no single nanoplatform that can be used in a diagnosis and treatment of more kinds of diseases. Each and every nanoplatform must be precisely tuned to maximise its in vivo effectiveness, while maintaining low toxicity for normal cells and tissues. It is also well known that the biological effects of nanomaterials considerably vary even with superficial changes in its morphology or size. Therefore, many efforts have been given to the development of precision synthesis protocols. Moreover, advanced functionalization methods allow the possibility of incorporating an increasing number of functionalities, which further allow to detect various biological responses, which further allow to target specific cells or sub-cellular compartments, or which can be used in an imaging of drug release.

At our research group, we tackle these scientific challenges with the primary goal to design efficient nanoplatforms and establish new protocols to address severe diseases, including osteosarcoma, breast adenosarcoma or glioblastoma.

Synthesis and functionalization of advanced nanostructured materials for active drug delivery systems, plasmonic or fluorescent based detection of clinically relevant molecular markers and chiral analysis.

Development of drug delivery systems based on i) advanced 2D nanomaterials and ii) biopolymeric nanocarriers.

Development of methods for a detection of clinically relevant molecular markers using optical methods and plasmonic nanostructures.

Analysis of chiral compounds using 2D optical anisotropic nanomaterials.

SALOVSKA, B., H. JANEČKOVÁ, I. FABRIK, R. KARLÍKOVÁ, L. CECHAKOVA, M. ONDREJ, M. LINK, D. FRIEDECKÝ, A. TICHY
Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLOS One. 2018, 13(7), e0199349, ISSN: 1932-6203, PMID: 30001349,
LÖFFLER, H., A. FECHTER, M. MATUSZEWSKA, R. SAFFRICH, M. MISTRÍK, J. MARHOLD, C. HORNUNG, F. WESTERMANN, J. BÁRTEK, A. KRÄMER
Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Research. 2011, 71(6), 2129-2139, ISSN: 0008-5472, PMID: 21406398,
SALOVSKA, B., H. JANEČKOVÁ, I. FABRIK, R. KARLÍKOVÁ, L. CECHAKOVA, M. ONDREJ, M. LINK, D. FRIEDECKÝ, A. TICHY
Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLOS One. 2018, 13(7), e0199349, ISSN: 1932-6203, PMID: 30001349,
LÖFFLER, H., A. FECHTER, M. MATUSZEWSKA, R. SAFFRICH, M. MISTRÍK, J. MARHOLD, C. HORNUNG, F. WESTERMANN, J. BÁRTEK, A. KRÄMER
Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Research. 2011, 71(6), 2129-2139, ISSN: 0008-5472, PMID: 21406398,
SZOTKOWSKI, T., Z. SUSTKOVA, J. VRBKOVÁ, J. HUBACEK, L. RAIDA, P. ROHON, A. KUBA, R. SZOTKOWSKA, Z. PIKALOVA, K. SICOVA, M. JAROSOVA, E. FABER, T. PAPAJIK, K. INDRAK
Maligní nádory vzniklé po úspěšné léčbě akutní myeloidní leukemie u dospělých nemocných: dlouhodobé zkušenosti jednoho pracoviště. Transfuze a hematologie dnes. 2013, 19(4), 209-2013, ISSN: 1213-5763.
MOBILE HYPERBARIC MINIATURE CHAMBER (Bolek)
  1. Patent: CZ 305989, Granted: 27.4.2016, Ownership: Palacky University Olomouc, Inventors: Kolářová HanaBajgar Robert, Tománková Kateřina, Bolek Lukáš, Dejmek Jiří, Bolek Matouš, Růžička Jiří, Beneš Jiří
  2. Published Application PCT/CZ2014/000153 under WO 2016/078629 (26.5.2016)
  3. Utility Model: PUV 2014-30305, CZ 27799, Granted: 6.2.2015, Ownership: Palacky University Olomouc, Inventors: Kolářová HanaBajgar Robert, Tománková Kateřina, Bolek Lukáš, Dejmek Jiří, Bolek Matouš, Růžička Jiří, Beneš Jiří

Status: Terminated

BIOLOGICAL INCUBATOR FOR STORAGE AND TRANSPORTATION OF BIOLOGICAL SAMPLES, ESPECIALLY CELL CULTURES (Mistrík)
  1. Utility Model: CZ 28195, Granted: 13.5.2015, Ownership: Technical University Brno, Palacky University Olomouc, Inventors: Paloušek David, Grepl Robert, Krejčí Petr, Vejlupek Josef, Mistrík Martin.
  2. Status: Terminated
DRÁBEK, J., J. BERKOVCOVÁ, P. DŽUBÁK, M. HAJDÚCH, M. KHOYLOU, V. KOUDELÁKOVÁ, J. SROVNAL, M. STAŇKOVÁ, R. TROJANEC
Detekce nádorových biomarkerů v molekulárně biologické laboratoři, 1. vyd, Olomouc, Univerzita Palackého v Olomouci, 2012, 144 s, Dedication: MOLONKOL CZ.1.07/2.3.00/09.0089, ISBN: 978-80-244-3002-7,
ANZENBACHER, P., U. ZANGER
Metabolism of drugs and other xenobiotics, 1.vyd, Weinheim, Germany, Wiley-VCH Verlag GmbH, 2012, 753 s, Dedication: CZ.1.05/2.1.00/01.0030, ISBN: 978-3-527-32903-8,
Medical Education for YouTube Generation, 1.vyd, Rijeka, InTech, 2012, 10, 157-177, Dedication: ÚMTM, ISBN: 978-953-51-0283-0,
Project: Plasmonic nanomaterials in cancer theranostics
Supervisors: Ranc Václav Ph.D.
Available: 2
Intended for: Doctoral training
Summary: 2 places in full-time or part-time study
IMTM, LEM, STAFF
CHILDREN'S CLINIC, EXSTAFF, IMTM, LEM, POSTDOCTORAL FELLOW