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Abstract
Purpose To assess the potential of αvβ6-integrin as a theranostic target in esophageal cancer.
Methods Membranous β6-integrin (ITGB6) expression was analyzed in 306 specimens of human esophageal squamous cell 
carcinoma (ESCC) obtained by immunohistochemistry (IHC) from 100 patient cases (1, 37, 58, and 4 of grade G1, G2, G3, 
and G4, respectively). Ga-68 labeling of D0103 was done manually for preclinical experiments and fully automated for clini-
cal application. Preclinical characterization of Ga-68-D0103 was performed in SCID mice bearing subcutaneous xenografts 
of H2009 (αvβ6-positive) or MDA-MB-231 (αvβ6-negative) carcinoma cell lines, by ex vivo biodistribution (10, 30, 90, 
and 180 min p.i) and PET imaging (30, 90, and 180 min p.i.)., without and with co-injection of gelofusine (4% succinylated 
gelatin). A patient with type-II diabetes (f, 68y, 115 kg) with proximal G2 ESCC was investigated by Ga-68-D0103 PET/CT 
(193 MBq) at 15, 45, 90, and 104 min p.i..
Results 99% of ESCC cases were found β6-integrin positive by IHC, of which 48%, 31%, and 20% showed strong, moder-
ate, and low ITGB6 expression, respectively, with no correlation to tumor grade. Ex vivo biodistribution of Ga-68-D0103 in 
H2009 xenografted mice after 30, 90, and 180 min showed tumor-to-blood ratios of 6.8, 37, and 124, respectively; tumor-
to-muscle ratios of 12, 14, and 36, respectively; tumor-to-liver ratios of 10, 17, and 14, respectively; and tumor-to-pancreas 
ratios of 20, 47, and 56, respectively. Co-administration of gelofusine did not change the tumor uptake but reduced the 
kidney uptake by 89% (from 178%iA/g to 19.1%iA/g, 90 min p.i.), resulting in an 8.7-fold higher tumor/kidney ratio. µPET 
imaging in H2009 xenografted mice confirmed a high tumor uptake and low background already 30 min p.i.. Blockade 
biodistribution and µPET in αvβ6-(–) MDA-MB-231 mice demonstrated target specificity. Clinical PET/CT of a patient 
with ESCC showed increasing tracer uptake over time in the primary tumor (SUVmax 9.0 and 11.3 at 15 and 104 min p.i., 
respectively) and in a lymph node metastasis (SUVmax 19.5 and 28.3, respectively), and a decreasing blood pool activity 
(SUVmean 2.75 and 0.98, respectively).
Conclusions High (99%) membranous expression frequency and density on tumor cells underscores the potential of αvβ6-
integrin as a theranostic target in ESCC, suggesting that αvβ6-integrin PET/CT imaging may adopt a role in re-staging and 
therapy guidance in this cancer type. The prolonged tumor retention furthermore indicates a therapeutic potential of αvβ6-
integrin targeted radiopharmaceuticals when labeled with radionuclides such as lutetium-177, terbium-161, or actinium-225.
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Introduction

Integrins are a class of 24 transmembrane cell surface recep-
tors, many of which are involved in cancer development 
and progression [1, 2]. αvβ6-Integrin is frequently overex-
pressed by carcinoma cells and is the likely most important 
activator of TGF-β [3]. Latent (inactive) TGF-β is secreted 
by virtually all mammalian cells into the extracellular space 
as a protein complex with latency-associated peptide (LAP), 
which, in turn, is bound to the extracellular matrix as the 
large latent complex (LLC). Activation of TGF-β starts with 
binding of αvβ6-integrin to an RGD-recognition motif in 
LAP, whereafter a force is transmitted from the intracellu-
lar actin cytoskeleton via the β6 subunit. The exerted force 
leads to deformation of LAP, thus releasing TGF-β in its 
freely diffusible form capable of binding to its receptors for 
signaling [4, 5]. TGF-β generally acts as a growth inhibitor 
in normal tissues and early stage cancer [6]. However, once 
the tumor cells have become insensitive to the anti-growth 
signals of TGF-β [7] by a loss of downstream components 
of the TGF-β signaling pathway, such as p53 [8] or Smad4 
[9], TGF-β promotes infiltrative growth and tumor malig-
nancy by augmenting cellular transformation, epithelial-
mesenchymal-transition driven invasion, metastasis [10], 
and particularly mediates suppression of the antitumor 
immune reaction by inhibiting cytotoxic T-cells and natu-
ral killer (NK) cells [11]. As these pro-oncogenic roles of 
TGF-β becomes particularly relevant in late-stage cancer, 
the expression of its main activator αvβ6-integrin is also 
linked to malignancy. Hence, αvβ6-integrin is upregulated 
in various malignant cancers [12], for example, in pancre-
atic ductal adenocarcinoma (PDAC) [13], oral squamous 
cell carcinoma (OSCC) [14], ovarian [15] and cervical can-
cer [16], and in non-small cell lung cancer (NSCLC) [17] 
and its brain metastases [18].

As a cell adhesion protein, αvβ6-integrin is typically 
found on tumor cell membranes. After binding to peptidic 
ligands, the ligand-receptor complex is internalized within 
30–60 min [19]. This mechanism can be exploited for tar-
geted drug delivery [20], e.g., to selectively kill tumor cells 
in vivo with peptide-drug conjugates comprising cytotoxic 
drugs and αvβ6-integrin binding peptides [21]. The ability 

to selectively deliver payloads (such as radionuclides, cyto-
statics, or siRNA) into the cytoplasm of tumor cells is 
perhaps the most important difference to another popular 
theranostic target, fibroblast activation protein (FAP) [22, 
23]. FAP is not normally expressed by tumor cells but by 
mesenchymal cells of many solid carcinomas [24], espe-
cially cancer-associated fibroblasts (CAFs) [25], which are 
typically αvβ6-integrin-negative in esophageal squamous 
cell carcinoma (ESCC; see an example in Fig. 1).

Taken together, αvβ6-integrin is a valuable target for 
imaging, not only in the context of theranostic radioligand 
pairs but also for image-based patient selection for αvβ6-
integrin targeted therapies [21], including but not limited to 
antibody–drug conjugates for anticancer treatment [26, 27]. 
Against this background, various αvβ6-integrin targeted 
PET radiopharmaceuticals have been developed and applied 
in cancer patients [28–36]. To date, the largest number of 
clinical αvβ6-integrin PET/CT applications in oncology 
have been reported for the peptide trimer 68Ga-Trivehexin, 
for example, in PDAC [37, 38], head-and-neck squamous 
cell carcinoma (HNSCC) [39, 40] and its brain metastases 
[41], non-small-cell lung cancer (NSCLC) [42], parathyroid 
adenoma [43] and carcinoma [44], bronchial mucoepider-
moid carcinoma [45], papillary thyroid carcinoma [46], and 
lobular [47] as well as lymphatically metastasized breast 
cancer [48].

The current work elucidates the clinical relevance of tar-
geting αvβ6-integrin in the context of ESCC. 306 human 
ESCC tissue specimens were analyzed by immunohisto-
chemistry (IHC) for membranous expression density and 
frequency of β6-integrin (ITGB6), which only dimerizes 
with αv-integrin and thus is limiting and indicative for 
actual membranous αvβ6-integrin abundance [13]. We 
furthermore characterized and evaluated the αvβ6-integrin 
targeted PET tracer 68Ga-D0103 for αvβ6-integrin targeted 
PET/CT imaging of locally advanced and metastatic esoph-
ageal cancer.

Fig. 1 Exemplary ITGB6 and 
fibroblast-activation protein (FAP) 
IHC in adjacent tissue sections of 
esophageal squamous cell carci-
noma (ESCC). Tumor cells show 
strong membranous αvβ6-integrin 
and no FAP expression, whereas 
stromal fibroblasts typically 
express FAP but no αvβ6-integrin
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Materials and methods

Immunohistochemistry

A tissue microarray (TMA) cohort consisting of 100 human 
esophagus cancer cases of the squamous cell carcinoma type 
(ESCC) was evaluated. Each case was represented by 1–8 
TMA cores (306 cores analyzed in total). Tissue samples 
were fixed in 10% neutral-buffered formalin and routinely 
processed for histology. β6-integrin (ITGB6) staining was 
performed on a Leica Bond Rxm autostainer (Leica Biosys-
tems, Wetzlar) using an anti-human β6-integrin antibody 
[clone 442.5C4] (#407317, dilution 1:100, Merck Millipore, 
Burlington, Massachusetts, USA); antigen retrieval with 
enzyme pretreatment (Bond™ Enzyme Pretreatment E1) 
for 5 min (#AR9551, Leica Biosystems, Wetzlar, Germany); 
visualization of antibody binding with brown chromogen 
(3,3’-diaminobenzidine (DAB) (#DS9800, Bond Polymer 
Refine Detection, Leica Biosystems, Wetzlar, Germany). 
Slides were digitized (Aperio AT2, Leica) and evaluated 
using a digital microscopy software (Aperio ImageScope, 
Leica). All cores (n = 306) were individually evaluated 
regarding immunoreactivity for β6-integrin in terms of a 
positive signal (brown DAB precipitate) of the tumor cell 
membranes. IHC readout was done according to Sipos et 
al. [49]. Membranous staining intensity was assessed using 
a 4-level scoring scheme (0: no membranous staining, 1, 
2, and 3: low, moderate, and strong membranous staining, 
respectively), referring to the membranous staining inten-
sity of the majority of the tumor cells in a given specimen 
and disregarding any cytoplasmic staining. In addition, the 
percentage (frequency) of β6-integrin positive tumor cell 
membranes was assessed for each tumor core. To determine 
a final case score, the β6-integrin staining intensity of the 
majority of tumor cells per core was multiplied with the fre-
quency of membranous positive tumor cells per core, and 
individual core scores were averaged if the number of cores 
was > 1 for a given case. Case scores were categorized into 
the following ITGB6 expression levels: negative (0), score 
0; low (1), scores > 0–1; moderate (2), score > 1–2; strong 
(3), score > 2–3.

FAP IHC (Fig. 1) was done with anti-human FAP 
monoclonal rabbit antibody [clone EPR20021] (abcam, 
# ab207178) diluted 1:100, with a 30 min heat pretreat-
ment using EDTA based pH 9 Epitope Retrieval Solution 2 
(#AR9640, Leica Biosystems, Wetzlar, Germany).

Radiopharmaceuticals

GaCl3 was obtained from a 68Ga/68Ge-generator (Eck-
ert & Ziegler Eurotope GmbH, Berlin, Germany) by a 
fractionated elution method using 0.1 M HCl [50]. The 

radiolabeling precursors Trivehexin and D0103 were syn-
thesized according to previously published protocols [36, 
51, 52]. 68Ga-radiolabeling was done by mixing a solution 
of sodium acetate (30 µL, 155 mg/mL in water) and 300 µL 
of generator eluate (80–85 MBq) with either 10 µg (for in 
vivo imaging) or 25 µg (for ex vivo biodistribution studies) 
of D0103 or Trivehexin. The mixture was incubated at 95 
°C for 15 min. Sodium acetate (100 µL) was then added to 
raise the pH to ~ 6.

The radiochemical purity of the radiotracers was evalu-
ated immediately after radiolabeling using radio-RP-HPLC, 
consisting of a Dionex UltiMate 3000 (Thermo Scientific, 
Waltham, Massachusetts, USA) with a GABI Star radia-
tion detector (Raytest, Straubenhardt, Germany); column: 
Nucleosil 120–5 C18 250 × 4 mm (WATREX, Prague, 
Czech Republic); flow rate: 1 mL/min; oven temperature: 
25 °C; UV detection wavelengths 225 nm and 250 nm; 
mobile phase gradient: acetonitrile (ACN) with 0.1% tri-
fluoroacetic acid (TFA) in water; 0–3 min, 0% ACN; 3–6 
min, 0–50% ACN; 6–10 min, 50–80% ACN; 10–13 min, 
80% ACN; 13–15 min, 0% ACN.

Cell culture

The human lung adenocarcinoma cell line NCI-H2009 
(ATCC, Virginia, USA) was cultured in Dulbecco's modi-
fied Eagle's medium (D-MEM) supplemented with 10% 
fetal bovine serum. Human mammary gland adenocarci-
noma cell line MDA-MB-231 (ATCC, Virginia, USA) was 
cultured in RPMI-1640 medium supplemented with 10% 
fetal calf serum. Media supplements were purchased from 
Merck (Darmstadt, Germany). Cells were incubated at 37 
°C in a 5% CO2 humidified incubator and subcultured at 
a confluence of 70–90%. Cell number and viability were 
determined using the Vi-CELL™ Cell Viability Analyzer 
(Beckman Coulter, California, USA). Expression of αvβ6-
integrin in H2009 xenografts, and complete absence of 
αvβ6-integrin in MDA-MB-231 xenografts, has been dem-
onstrated previously [39].

Animal experiments

All animal experiments were approved by the Czech Min-
istry of Education, Youth, and Sports (MSMT-35035/2019–
3) and the Institutional Animal Welfare Committee of the 
Faculty of Medicine and Dentistry, Palacký University, 
Olomouc, and were performed in accordance with the regu-
lations and guidelines of the Czech Animal Protection Act 
(no. 246/1992). Female 6–8 week old SCID mice (Envigo, 
Horst, The Netherlands) were used for animal experiments 
in this study. The animals were acclimatized to the labora-
tory conditions for at least one week prior to the experiments. 
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processing and quantification were performed using Mediso 
InterView™ FUSION (Mediso Medical Imaging Systems, 
Budapest, Hungary). The scans were normalized to injected 
activity and animal weight.

Clinical PET/CT imaging

The utilization of 68Ga-D0103 was executed on a compas-
sionate use basis, following the acquisition of an informed 
consent from a 68 year-old female patient. The patient had 
been diagnosed with a moderately differentiated (G2) non-
cornifying squamous cell carcinoma; with a tumor-node-
metastasis (TPS) of less than 1%, a combined positive 
score (CPS) of 2, IC 2%, positive p40 staining, and positive 
CK5/6 staining. Given the patient´s concurrent diagnosis of 
diabetes mellitus type II with elevated blood glucose lev-
els, 68Ga-D0103 was considered the preferred diagnostic 
modality over [18F]fluorodesoxyglucose (18FFDG) in this 
particular clinical context. The 68Ga-D0103 intended for 
clinical use was produced in accordance with cGMP guide-
lines and provided as a sterile, filtered, and saline-diluted 
solution with a specific activity of 185.8 MBq/mL. Qual-
ity control was performed in accordance with the relevant 
European guidelines, Eu. Ph. chapters and along the lines of 
existing monographs for 68Ga-radiopharmaceuticals. PET/
CT imaging was performed on a dedicated PET/CT device 
(Biograph mCT 64®; Siemens Healthineers, Erlangen, Ger-
many). An activity of 193 MBq 68Ga-D0103 was admin-
istered intravenously, after which PET imaging data were 
acquired 15, 45, and 104 min p.i.. The imaging procedure 
covered the entire body (skull base to mid-thigh) and pro-
vided axial bed coverage of 216 mm each (Siemens TrueV 
R; bed overlap, 89 mm). The low-dose CT was used for 
attenuation correction and anatomical mapping (tube cur-
rent, 50 mA; tube voltage, 120 kV; gantry rotation time, 
0.5 s; pitch, 0.8). Subsequently, a PET/CT acquisition of 
the chest only was performed 90 min p.i. for radiotherapy 
planning purpose. The PET data were reconstructed using 
an iterative reconstruction algorithm with a Gaussian filter.

Results

Analysis of ITGB6 expression in ESCC

Expression analysis was focused exclusively on membra-
nous ITGB6 since intracellular (αv)β6-integrin cannot be 
directly addressed with radiolabeled peptide ligands and 
is therefore irrelevant in the context of PET imaging and 
theranostics. The final scores of 100 evaluated ESCC cases 
(based on 306 specimens, 1–6 per case) ranged from 0 (no 
membranous β6-integrin signal) to 3 (all cores per patient 

Animals were housed in groups of 5–6 in individually venti-
lated cages on sawdust with free access to animal chew and 
water. The general health of animals was monitored daily. 
Multiplicity of PET and biodistribution studies ranged from 
4 to 5 (3 for blockade biodistribution). To avoid animal suf-
fering and to reduce movement artifacts, retro-orbital appli-
cations and imaging were performed under 2% isoflurane 
anesthesia (FORANE, Abott Laboratories, Illinois, USA).

Biodistribution studies were done using tumor-bearing 
mice. The mice were subcutaneously injected into the right 
flank with 5 × 106 H2009 or 2 × 106 MDA-MB-231 cells, 
without (H2009) or combined with (MDA-MB-231) Matri-
gel Matrix (Corning, New York, USA) at a 1:1 ratio before 
application. The tumor growth was periodically monitored 
by caliper-based measurements. When the tumor volume 
reached approximately 500 mm3

, mice were used for ex 
vivo biodistribution or in vivo imaging studies.

For ex vivo biodistribution studies, the radiotracers pre-
pared as described above were diluted with saline to the total 
volume of 2 mL. To evaluate the specificity of the uptake 
in tumor, a group of mice (n = 3) was pretreated r.o. with 
cold unlabeled D0103 10 min before the application of the 
radiolabeled tracer. To assess the effect of plasma expand-
ers on the biodistribution of 68Ga-D0103, another group 
of mice (n = 4) received an i.v. injection of 100 µl of 4% 
succinylated gelatin (gelofusine) 5 min before application 
of the radiotracer. The other experimental groups were not 
pretreated before tracer administration. Animals received 
100 µl of diluted radiotracer r.o. at an activity of ~ 3 MBq 
corresponding to ~ 1.25 µg (0.25 nmol) of radiotracer. The 
mice were sacrificed by cervical dislocation at 10, 30, 90, 
and 180 min post-injection. The organs of interest (blood, 
heart, lung, liver, spleen, pancreas, empty stomach, empty 
small intestine, empty large intestine, muscle, tumor, and 
kidneys) were collected, weighed, and the activity measured 
on an automatic gamma counter (2480 Wizard2, Perki-
nElmer, Massachusetts, USA). The tracer accumulation was 
expressed as a percentage of injected activity per gram tis-
sue (%iA/g).

For µPET/CT imaging, animals under inhalation anes-
thesia were r.o. injected with 100–150 µl of radiotracers cor-
responding to 15–20 MBq and ~ 2.5–3.5 µg (0.5–0.8 nmol) 
of radiotracer per animal. All animals were placed in prone 
position in the Mediso NanoScan® PET/CT small animal 
imaging system (Mediso Medical Imaging Systems, Buda-
pest, Hungary). Static imaging was initiated 30, 90, and 180 
min post-injection. A single FOV (98.5 mm) PET lasting 15 
min was performed, immediately followed by a whole-body 
helical CT scan (50 kVp/980 μA, 720 projections). The 
images were reconstructed using Mediso Tera-Tomo™ 3D 
PET iterative reconstruction (Mediso Medical Imaging Sys-
tems, Budapest, Hungary). Image visualization, analysis, 
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to 0.78%iA/g. A concomitant reduction was observed for 
uptake in lung, stomach, and intestines (Fig. 4A). In mice, 
these organs express αvβ6-integrin and thus can be consid-
ered as physiological controls [51].

To reduce renal uptake, we furthermore investigated 
co-injection of 4% succinylated gelatin in saline (a plasma 
expander, herein termed gelofusine), which was previously 
identified as a suitable kidney protection agent for αvβ6-
integrin targeting peptide multimers [36]. Administration 
of 100 µL of gelofusine 5 min prior to the tracer reduced 
the kidney uptake of 68Ga-D0103 by 89% (from 178 to 
19.1%iA/g, 90 min p.i.), while the tumor uptake was not 
significantly changed (Fig. 4B). As a result, the tumor/kid-
ney ratio was improved from 0.039 to 0.34, i.e., by a factor 
of approx. 8.7.

68Ga-D0103 µPET images acquired 30, 90, and 180 min 
p.i. in αvβ6-integrin positive H2009 mice showed a high 
tumor/background contrast already at early imaging time 
points as 30 min p.i. (Fig. 5). Pre-treatment with gelofusine, 
administered 5 min before 68Ga-D0103, resulted in a strong 
reduction of the kidney signal and a further reduction of the 
background. PET images of mice bearing αvβ6-integrin-
negative MDA-MB-231 xenografts mice showed no signal 
in the tumors, indicating that 68Ga-D0103 accumulation in 
H2009 tumor tissue was target specific (Fig. 6).

Clinical PET/CT imaging using 68Ga-D0103

Administration of 68Ga-D0103 was well tolerated without 
any adverse reactions. Rapid and increasing tracer uptake 
was observed in the primary tumor (SUVmax 9.0 and 11.3, 15 
and 104 min p.i., respectively) and in a lymph node metas-
tasis (SUVmax 19.5 and 28.3, respectively) (Fig. 7). The 
already initially low background activity further decreased 
over time (SUVmean in the blood pool was 2.76 and 0.98; 
in liver, 1.84 and 1.73; 15 and 104 min p.i., respectively). 
Interestingly, uptake in the tumor lesions was lowest at 45 
min p.i., which cannot be conclusively explained at this 
time due to lack of further clinical data.

displayed 100% score 3). 48 (48%) of evaluated cases 
showed strong, 31 (31%) moderate, and 20 (20%) low posi-
tivity for avβ6-integrin (Fig. 2).

Altogether, 99 out of 100 ESCC patient cases (99%) in 
our cohort were found positive for membranous ITGB6 
expression. Because β6-integrin only dimerizes with 
αv-integrin, and only the dimer αvβ6-integrin is transported 
to and anchored in the cell membrane [53], these figures can 
be considered representative for membranous αvβ6-integrin 
expression.

There was no correlation of tumor grade with IHC scores. 
In our cohort, 1, 37, 58, and 4 of the investigated cases were 
ESCC of grades G1, G2, G3, and G4, respectively, with 
IHC scores of 2.3, 1.96 ± 0.85, 1.71 ± 0.92, and 1.75 ± 1.11, 
respectively (averages ± SD).

Preclinical PET tracer evaluation

Preclinical evaluation of 68Ga-D0103 was done in compari-
son to the currently most widely used αvβ6-integrin PET 
radiopharmaceutical, 68Ga-Trivehexin. The ex vivo biodis-
tribution profiles of 68Ga-D0103 and 68Ga-Trivehexin were 
investigated in severe combined immunodeficiency (SCID) 
mice bearing subcutaneous H2009 (human lung adenocar-
cinoma) xenografts up to 180 min after tracer administra-
tion. Both radiopharmaceuticals showed a comparable 
tumor uptake. A faster clearance from the blood pool was 
observed for 68Ga-D0103. Furthermore, a lower uptake than 
68Ga-Trivehexin in most organs was observed, particularly 
in the liver, spleen, pancreas, stomach, and intestines, with 
exception of the kidneys (Fig. 3A). For all investigated time 
points (10, 30, 90, and 180 min p.i.), the tumor/blood ratios 
of 68Ga-D0103 (1.45, 6.8, 37, and 124, respectively) were 
markedly higher than those of 68Ga-Trivehexin (0.84, 2.3, 
7.5, and 17, respectively), and higher tumor/organ ratios 
were furthermore observed for most other organs (Fig. 3B).

Target specificity of the tumor uptake of 68Ga-D0103 
was confirmed by blockade with excess unlabeled precur-
sor (50 nmol), which reduced the tumor uptake from 6.9 

Fig. 2 A Distribution of ITGB6 (β6-integrin) membranous expression 
levels in a 100-patient cohort of esophageal squamous cell carcinoma 
(ESCC). B Examples for immunohistochemistry (IHC) stainings for 
membranous ITGB6 expression scores 3, 2, and 1 (strong, moderate, 
and low expression, respectively) and score 0 (β6-negative). Note 

the diffuse cytoplasmic signal for score 0, which was not considered 
ITGB6-positive because only membranous ITGB6 expression was 
taken into account. Find more examples of ITGB6 IHC stainings in 
the Supplemental Information
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Discussion

Imaging in ESCC management

The global incidence of esophageal cancer was about 
511,000 in 2022, with an expected increase to 623,000 
and 779,000 in 2030 and 2040, respectively [54]. With a 
low 5-year survival rate (22–24%) and a strong impact on 
the patients'quality of life, the disease is a rapidly growing 

As expected from the preclinical data, a strong uptake 
was observed in the kidneys, which did not interfere with 
the observed tumor lesions (Fig. 8). In addition, a notable 
uptake was observed in the stomach wall, which is attrib-
uted to physiological uptake as the same phenomenon has 
occasionally been reported for other αvβ6-integrin targeted 
PET imaging agents [34, 35, 38].

Fig. 4 A Biodistribution of 68Ga-
D0103, 90 min p.i., w/o and w/
blockade (50 nmol unlabeled pre-
cursor, administered 10 min before 
the radioactive compound, n = 3). 
B Biodistribution of 68Ga-D0103, 
90 min p.i., without and with 
co-injection of gelofusine (Gelo, 
100 µL administered 5 min before 
68Ga-D0103, n = 4), in H2009 
xenografted mice

 

Fig. 3 Comparison of ex vivo data 
for 68Ga-D0103 and 68Ga-Trivehe-
xin, generated using mice bearing 
subcutaneous xenografts of H2009 
(αvβ6+ human lung adenocarci-
noma) cell lines. A Biodistribu-
tion at time points 10, 30, 90, and 
180 min p.i. (n = 4–5 per group). 
B Tumor/Organ ratios at time 
points 10, 30, 90, and 180 min p.i
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impairs the patients'quality of life [57, 58]. Active surveil-
lance instead of surgery can improve patient well-being, an 
approach that is currently investigated in, e.g., the ESO-
STRATE (NCT02551458) and SANO-2 (NCT04886635) 
trials. Restaging after neoadjuvant therapy is a well-known 
challenge in ESCC management, as the radiological appear-
ance of the tumor and the treated positive lymph nodes can 
be difficult to interpret owing to induced fibrosis and ulcer-
ation. The quality of life of ESCC patients with an apparent 
complete clinical response (cCR) after radiochemother-
apy (RCT) could be significantly improved if esophageal 

public health problem, the main risk factors being smok-
ing and alcohol consumption [55]. ESCC accounts for 
approximately 20–40% of all esophageal cancer cases in 
western countries, and up to 90% in the so-called “Asian 
esophageal cancer belt” where > 50% of all ESCC cases 
worldwide occur [56]. A preferred treatment strategy for 
locally advanced and/or lymphatically metastasized ESCC 
is induction or definitive RCT, followed by surgical resec-
tion [55, 57, 59]. However, esophagus surgery or even 
esophagectomy is associated with a high postoperative 
morbidity rate of 60%, a mortality rate of up to 5%, and 

Fig. 6 Static µPET images 
(maximum intensity projections, 
MIPs) of αvβ6-integrin negative 
MDA-MB-231 xenografted mice, 
30, 90, and 180 min p.i., recording 
time 15 min. Gelofusine (Gelo, 
100 µL) was administered 5 min 
before 68Ga-D0103. Animals were 
imaged three times following a 
single injection of the tracer. The 
bottom row shows the same MIPs 
as the top row, applying a colored 
lookup table

 

Fig. 5 Static µPET images (maximum intensity projections) of αvβ6-
integrin expressing H2009 xenografted mice, 30, 90, and 180 min p.i., 
recording time 15 min. Animals were imaged three times following a 

single injection of the respective tracer. Gelofusine (Gelo, 100 µL) was 
administered 5 min before 68Ga-D0103. The bottom row shows the 
same MIPs as the top row, applying a colored lookup table

 

1 3



European Journal of Nuclear Medicine and Molecular Imaging

Non-specific 18F-FDG uptake may therefore compromise 
the accuracy of locoregional imaging, making it difficult 
to distinguish between malignant and benign inflammatory 
processes. Another complicating factor is the prevalence of 
comorbidities like diabetes mellitus among ESCC patients, 
as highlighted in our clinical case. Diabetes can affect 18F-
FDG distribution due to altered glucose metabolism, which 
potentially leads to decreased tracer uptake in tumors and 
increased background activity [62]. Patients who have 
undergone interventions, such as biopsy or surgery, may 
exhibit altered 18F-FDG uptake patterns due to tissue repair 
processes, further limiting the specificity of 18F-FDG PET. 
From a large meta-analysis (3625 pts, 56 studies), de Gouw 

surgery or esophagectomy is delayed or avoided and an 
active surveillance strategy is applied instead [59], which 
requires reliable methods to distinguish between patients 
with pathological complete response (pCR) and cCR.

18F-FDG PET imaging has been a cornerstone in the 
evaluation and management of ESCC, serving as the stan-
dard of care for staging, restaging, and monitoring of treat-
ment response [60]. However, specificity of 18F-FDG PET 
is limited due to its uptake in inflammatory tissues, which 
can lead to false-positive results and obscure accurate tumor 
delineation [61]. Inflammation is common in ESCC patients 
due to factors such as esophagitis, prior interventions, 
or the tumor itself inducing an inflammatory response. 

Fig. 8 68Ga-D0103 PET (MIPs, scaled to SUV 15) of a patient with esophageal squamous cell carcinoma (ESCC; f, 68 y, 115 kg, 193 MBq). Times 
indicate scan starts after tracer injection (p.i.). Solid arrows: ESCC primary tumor. Outline arrows: lymph node metastasis

 

Fig. 7 68Ga-D0103 PET/CT of a patient with esophageal squamous 
cell carcinoma (ESCC; f, 68 y, 115 kg, 193 MBq). PET is scaled to 
SUV 7 in all images. A, axial slices through primary tumor. B, axial 

slices through lymph node metastasis. Times indicate scan starts after 
tracer injection (p.i.). Numbers on arrows indicate the SUVmax
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tracer kinetic based on the data obtained here can be found 
in the Supplemental Information.

In view of the high uptake of 68Ga-D0103 in the pri-
mary tumor and especially in a lymph node metastasis 
at later time points, the present clinical case suggests a 
potential added value of 68Ga-D0103 PET/CT for imag-
ing of lymphatically metastasized ESCC in a challenging 
setting. This finding fully met our expectations as our IHC 
analysis showed that 99% of the immunohistochemically 
investigated human ESCC cases displayed membranous 
αvβ6-integrin positivity for tumor cells, and furthermore 
48% of those exhibited a strong membranous expression 
for αvβ6-integrin (see Fig. 2). Of note, previously reported 
clinical data already suggested an insignificant uptake of 
αvβ6-integrin PET tracers in cancer-associated inflamma-
tion because αvβ6-integrin is not specifically upregulated 
in inflamed areas [40]. Therefore, it seems worthwhile to 
further evaluate the ESCC specificity of 68Ga-D0103 PET in 
comparison to 18F-FDG PET, and to assess the clinical value 
of αvβ6-integrin PET/CT for ESCC diagnostics at different 
stages of the patient journey in prospective clinical trials. As 
ITGB6 expression in ESCC was not dependent from tumor 
grade, it is expected that 68Ga-D0103 PET/CT should per-
form equally well for patients at any stage.

This work has several limitations. Since the preclini-
cal models are based on immune-compromised animals, 
the αvβ6-integrin mediated TGF-β activation and its inter-
play with the immune system might not be reflected. Fur-
thermore, the clinical evaluation based on a single patient 
restricts the generalizability of 68Ga-D0103 PET/CT's 
diagnostic performance and reproducibility. Larger clini-
cal cohorts will be required to validate diagnostic accuracy, 
sensitivity, and specificity, particularly for restaging and 
metastasis detection. In addition, a rigorous correlation of 
PET uptake with αvβ6-integrin expression levels (IHC) is 
needed to establish the link between αvβ6-integrin abun-
dance, PET data, and clinical outcomes (e.g., survival, 
recurrence, or response to therapy), and to define prognostic 
and therapeutic implications.

Conclusion

The nearly complete (99%) αvβ6-integrin positivity of 
ESCC and the high average expression density on ESCC 
tumor cell membranes indicate a high potential of this recep-
tor as a theranostic target in this cancer entity. Our study 
indicated a potential value of αvβ6-integrin PET/CT imag-
ing for re-staging and therapy guidance in certain cases. 
The prolonged tumor retention of 68Ga-D0103 furthermore 
suggests a therapeutic potential of αvβ6-integrin targeted 
radiopharmaceuticals when labeled with radionuclides like 

et al. concluded that current imaging techniques used for 
staging after neoadjuvant therapy (CT, 18F-FDG PET/CT, 
and endoscropic ultrasound, EUS) are unfit to guide treat-
ment decisions [57]. Another recent meta-analysis of 44 
studies stated that the accuracy of endoscopic biopsies, EUS, 
and 18F-FDG PET(/CT) as single modalities for detecting 
residual disease after neoadjuvant chemoradiotherapy for 
esophageal cancer is insufficient [63]. A recommendation 
not to use 18F-FDG PET to guide post-RCT decisions in 
patients with esophageal cancer was already made in 2010 
on the basis of 20 reports [64], and the same recommenda-
tion is, for example, still included in the current German S3 
guideline for esophageal cancer [55]. The reported ranges 
for cCR prediction accuracy and negative predictive values 
(NPV) (56–88%, 35–94%) of 18F-FDG PET/CT [59] leave 
room for improvement of the corresponding PET/CT diag-
nostics by using more tumor-specific tracers.

Tracer development and translation

Comparison of preclinical data for 68Ga-D0103 and 68Ga-
Trivehexin (see Fig. 3 and Fig. 5) suggested a generally 
lower background and less nonspecific uptake of 68Ga-
D0103. Our first clinical 68Ga-D0103 PET scan did not 
provide clear evidence for such an advantage, which high-
lights a limited correlation of preclinical studies in rodents 
with human data. However, given the large interindividual 
deviations of the general biodistribution of 68Ga-Trivehexin 
[41], the hypothesis can neither be confirmed nor refuted on 
the basis of a series of 68Ga-D0103 PET scans for a single 
patient, assuming that biodistribution of this tracer is also 
variable. Tumor uptake of 68Ga-D0103 after 104 min was 
higher than at the earlier time points (15, 45, and 90 min 
p.i.), which suggests that uptake of 68Ga-D0103 apparently 
progresses over an even longer period of time. In accordance 
with preclinical biodistribution data, 68Ga-D0103 showed 
a longer tumor retention in humans than 68Ga-Trivehexin, 
which reached its maximum tumor uptake in pancreatic 
ductal adenocarcinoma (PDAC) already at approximately 
20 min p.i. [41] and slightly decreased average tumor 
uptakes at 120 min p.i. [40]. The absorbed effective dose for 
68Ga-D0103 is very likely within the range known for 68Ga-
labeled radiotracers, especially since the variation is small 
for dose coefficients of radionuclides with relatively short 
half-lives [65]. For example, assuming the dose coefficient 
for 68Ga-HA-DOTATATE of 0.0257 mSv/MBq [66], the 
whole-body PET with the activity administered here would 
result in an effective dose of approximately 4.9 mSv, which 
is very similar to the effective dose calculated for 68Ga-
Trivehexin (4.7 mSv). For a more accurate estimation of the 
effective dose, organ-specific tracer kinetics would be nec-
essary at more time points. An estimate of the organ-specific 
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