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ABSTRACT: The annotation of metabolites detected in LC-MS-
based untargeted metabolomics studies routinely applies accurate
m/z of the intact metabolite (MS1) as well as chromatographic
retention time and MS/MS data. Electrospray ionization and
transfer of ions through the mass spectrometer can result in the
generation of multiple “features” derived from the same metabolite
with different m/z values but the same retention time. The
complexity of the different charged and neutral adducts, in-source
fragments, and charge states has not been previously and deeply
characterized. In this paper, we report the first large-scale
characterization using publicly available data sets derived from
different research groups, instrument manufacturers, LC assays, sample types, and ion modes. 271 m/z differences relating to
different metabolite feature pairs were reported, and 209 were annotated. The results show a wide range of different features being
observed with only a core 32 m/z differences reported in >50% of the data sets investigated. There were no patterns reporting
specific m/z differences that were observed in relation to ion mode, instrument manufacturer, LC assay type, and mammalian sample
type, although some m/z differences were related to study group (mammal, microbe, plant) and mobile phase composition. The
results provide the metabolomics community with recommendations of adducts, in-source fragments, and charge states to apply in
metabolite annotation workflows.

■ INTRODUCTION
Discovery-based untargeted metabolomic studies use a data-
driven approach to investigate the metabolite composition of
biological samples. The chemical structures of some or
normally all of the metabolites (including lipids) are not
known prior to data acquisition, and the data collected is
applied to derive one or multiple chemical structures for a
detected signal. Ultra-high-performance liquid chromatogra-
phy−mass spectrometry (UHPLC-MS) is the most frequently
applied analytical platform in these discovery-based metab-
olomics studies because of the sensitivity and large number of
metabolites that can be detected. The four types of commonly
collected data applying UHPLC-MS are the chromatographic
retention time (RT), the chromatographic peak area, the mass-
to-charge ratio (m/z) of the intact metabolite (MS1 data), and
the fragmentation mass spectrum following gas-phase
fragmentation (MS/MS data). Data that are less frequently
collected are MSn fragmentation mass spectra (where n > 2)1,2

and ion mobility data.3,4

Three types of scientific data (RT, MS1, MS/MS) provide
complementary information that is applied to derive one or
multiple chemical structures for a detected signal. Chemical
structure annotation applying RT and MS/MS data requires
collection of reference data for authentic chemical standards
that are stored in a library (e.g., see5) and are then matched to
experimental data collected for biological samples. The size of

these databases compared to the proposed size of metab-
olomes is small and limits the number of metabolite chemical
structures that can be annotated applying this strategy.6 In-
silico prediction of RT7,8 and MS/MS mass spectra9−11 and
molecular networking12,13 are areas of significant development
to increase the number of metabolites that can be annotated
using these types of data. However, annotation of all detected
metabolites is not achievable, and it is estimated that only 5−
10% of signals are annotated using MS/MS mass spectral
libraries.14 Therefore, there are many signals for which MS1
data can only be used for annotation without further
experimental work.
The metabolite coverage in metabolomic (e.g., HMDB15)

and chemical (e.g., PubChem16) databases is significantly
greater compared to RT and MS/MS databases (for example,
HMDB v515 contains 220,945 metabolites and a large mass
spectral library (mzCloud17) contains 12,549 endogenous
metabolites (manual and autocurated)). A common approach
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applied as a first step to annotate metabolites is to use large
metabolomic or chemical databases as the starting search space
and to use MS1 data to reduce the size of the search space to
ideally one, or typically a small number of, molecular formulas
(for example, see ref 18). The reported molecular formulas
(and related isomeric metabolites) can then be searched for in
RT and MS/MS databases to further reduce the number of
possible annotations for a single signal and provide a greater
level of confidence for the metabolite’s chemical structure
annotation (as defined by proposed reporting standards
constructed by the Metabolomics Standards Initiative19).
UHPLC-MS platforms predominantly apply electrospray

ionization (ESI) to generate charged species (ions) at
atmospheric pressure prior to the collection of MS1 and
MS/MS data. The ESI source can be described as an
electrochemical reactor where both high electrical voltages
and high temperatures are applied to both liquid and gas
phases containing not only the metabolites of interest but also
other chemicals derived from the biological samples (e.g.,
metals) and liquid chromatography mobile phases (chemical
solvents, inorganic/organic salt additives). The combined
processes of ionization and desolvation generate multiple
ions of different m/z and the same RT from the same
metabolite; these have been defined as metabolite features20 or
degenerate features.21 The complexity of the MS1 data
collected is increased because one metabolite can be detected
as multiple peaks, and to be able to accurately annotate the
metabolite, the ion type needs to be derived to correctly
calculate the monoisotopic mass of the metabolite. This
complexity was demonstrated in 2009,20 and further assess-
ments of the data complexity have been presented more
recently.21 Adducts (e.g., [M + Na]+), isotopic peaks (e.g., 12C
− 13C), in-source fragments (e.g., loss of water through
fragmentation in the ion source and mass spectrometer
focusing lenses), oligomers, and multiply charged ions are all
generated and contribute to this increase in complexity. The
first logical step to apply to MS1 data is to group features of
the same metabolite together using MS1 m/z differences, RT
similarity, and pairwise response correlation analysis (e.g.,
see18,22,23). Once metabolite features are grouped, determi-
nation of the molecular formulas and putative annotation to
metabolite chemical structures can be performed.
The current and significant problem in this process is which

adducts, isotopes, in-source fragments, and charge states to
apply in the metabolite feature grouping process. The
application of too few or too large numbers of grouped
features from the same metabolite can potentially result in a
high proportion of false positives or a low proportion of true
positives due to features related to the same metabolite not
being grouped together. Best practices and standardization of
which adducts, isotopes, in-source fragments, and charge states
to apply in the process of metabolite annotation are not
presently available in the metabolomics community, and
different software apply different lists of adducts and fragments.
Therefore, an optimal set of adducts, isotopes, and in-source
fragments to use is not known and is not currently applied in
the metabolomics community.
As a constructive step to work toward best practices, we

report for the first time the characterization of the complexity
of ESI-derived metabolite features present in 142 data sets
derived from different research groups applying different
UHPLC-MS assays and mass spectrometry instruments,
which were applied to study different types of biological

samples. The data sets have been collected from two
metabolomics data repositories (MetaboLights24 and Metab-
olomics Workbench25) and the author’s laboratory. We will
report the frequency of m/z differences and relate these to
adducts, isotopes, in-source fragments, and charge state.
Subsequently, we will investigate whether defined m/z
difference lists could be applied to specific instrument types,
sample types, or LC assay types to increase the level of
standardization within the metabolomics community.

■ EXPERIMENTAL SECTION
Sources of Processed Data Sets. In total, 142 data sets

(preprocessed m/z−RT pair intensity matrices) were sourced
for this study. All studies with an associated intensity matrix
that contained more than nine samples and greater than 999
m/z−RT features and that were present in the publicly
available metabolomics data repositories Metabolights26 and
Metabolomics Workbench27 as of July 1, 2020 were down-
loaded. These included 36 data sets from 20 studies available
in MetaboLights and 73 data sets from 45 studies available in
Metabolomics Workbench. A further 33 data sets from 17
studies were provided from the author’s (WD) research group.
Within these data, a variety of different mass spectrometers
were applied from a range of instrument companies; the same
can be said for LC systems and chromatographic columns as
well as mobile phases. Sample types throughout are also varied
and include mammalian, plant, and microbial samples. The
combination of the data sets ensures that the results derived
are representative of the multitude of UHPLC-MS config-
urations and sample types applied in the wider metabolomics
community.

Computational Workflow. The computational workflow
applied is visualized in Supporting Information File 1. All data
sets were analyzed within the statistical computing software R
version 1.3.1056.
Step 1: Mass Difference Database Generation (Script 1)

(analysis_loop_v2_WN_function_RWall_2020.R). This func-
tion was written by the author (W.J.N.) to calculate the
Pearson correlation, p-value, and m/z distance for all possible
feature pairs within overlapping RT windows of user-defined
width (2 s width and 1 s overlap in this study) in an m/z−RT
intensity matrix for each of 142 data sets separately. The results
were stored in an SQL database.
S t e p 2 : D a t a b a s e F i l t e r i n g ( S c r i p t 2 )

(sqlwork_20210312_2.R). Each data set within the SQL
database constructed in step 1 was filtered with the filtered
results saved into a single new SQL database containing results
for all 142 data sets (result.sqlite). All feature pairs with a
Pearson correlation coefficient of ≥0.5, p-value ≤0.05, and a
presence in at least 30% of samples in the data set were
retained, and all other feature pairs were deleted.
Step 3: Gaussian Kernel Density Estimation (Script 3)

(Kernel_Density_Estimation_20210309.R). For all pairs in the
filtered SQL database (result.sqlite), Gaussian Kernel density
estimation (GKDE) was performed on all the m/z distances
between the feature pairs from all data sets simultaneously to
allow determination of the most common m/z differences
present in the total data. GKDE was carried out using the
density() function (bandwidth = 0.0001, N = 2^22, kernel =
“Gaussian”, na.rm = TRUE) that is part of the base stats
package of R. The m/z differences were rounded to four
decimal places before GKDE was performed. The density and
associated m/z differences were then sorted by density in
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descending order. Any m/z difference with a density of less
than 0.1 was removed from the list.
Step 4: m/z Difference Counting and Grouping Part 1

(Script 4) (Count_grouping.R). A grouping process was then
carried out using the results from steps 2 and 3. The m/z
distances from each individual data set generated in step 2
were accessed sequentially. The frequency of each four decimal
place m/z difference in each individual data set was counted,
and the resulting table was saved in a new SQL database. The
GKDE result produced from step 3 was then utilized. The
densities and associated four decimal place m/z differences
were sorted into descending density order. The count table for
each data set was then grouped using the top m/z difference
density result from the total GKDE data. The top m/z
differences were searched for using a ±0.0005 m/z window.
Upon counting and summing, the m/z differences were
removed from the count table to ensure each m/z difference
is counted once. All rows within the GKDE result table that
were within the searched window were removed to avoid
spurious count results. Each of the 142 data sets produced a
grouped result stored in the data set_count_tables.sqlite.
Step 5: m/z Difference Counting and Grouping Part 2

(Script 5). A second stage of grouping and summing was
performed using the same method as described during the first
grouping stage (step 4) using the GKDE result. The input,
however, was the already grouped count tables present in the
SQL database created during step 4 (data set_count_ta-
bles.sqlite). The window applied for grouping was ±0.001 m/z.
The result for each data set was saved in a new SQL database
(data set_count_tables_density_merge.sqlite).
Step 6: Grouping and Summing GKDE Result (Script 6)

(Group_density.R). The GKDE result was grouped using a
window of ±0.001 m/z using a modified version of the method
applied in scripts 4 and 5. Grouped densities were summed
together. The result was saved as a.csv file.
Step 7: Frequency Table (Script 7) (Frequency_Table_-

Merge.R). The grouped GKDE result was used as a reference
to the count data from each individual data set to allow
merging based on the m/z differences and the subsequent
creation of a frequency table. The SQL database produced
during step 5 was used to provide the count data. The result
was exported as a.csv file.

Annotation of m/z Differences. Annotation of m/z
differences was performed in three stages. The first stage
searched for known m/z differences related to isotopes and
charged adducts carrying single or multiple charges and was
performed manually by the authors (W.J.N. and W.B.D.). The
second stage manually searched for m/z differences related to
known neutral adducts and in-source fragments and separately
for metabolic transformations listed in KEGG.28 The third
stage applied ChemCalc29 to convert the m/z of unannotated
m/z differences to molecular formula(e) using a 10 ppm mass
accuracy and the following range of elements: C0−100, H0−
100, N0−10, O0−10, S0−10, and P0−10. The fourth stage
manually searched for multiply charged differences and
differences between already annotated m/z differences.

■ RESULTS AND DISCUSSION
Summary of Data Sets Applied. All publicly available

data sets for which intensity matrices after raw data processing
were available as of July 1, 2020 and contained m/z, RT, and
peak area data for greater than nine samples and 999 m/z−RT
features were applied in this study. In total, 142 data sets from

82 different metabolomic studies were applied. 61 and 48 data
sets were downloaded from the Metabolomics Workbench and
MetaboLights data repositories, respectively (65 independent
biological studies), noting that many deposited studies did not
contain a post-processing data matrix. Thirty-three data sets
from the authors laboratory were also included (17
independent biological studies) to increase the diversity of
sample types. Data for positive (78 data sets) and negative (64
data sets) ion modes were applied. Primarily, two different
chromatography assays were studied, HILIC and normal phase
assays (36 data sets) and reversed phase assays (106 data sets).
Microbial (10 data sets), plant (26 data sets), and mammalian
(102 data sets) sample types were all present and originated
from 27 different research institutions. Supplementary file 2
lists information on the data sets applied and provides a
summary of the different sample types, ion modes, and assay
types.

Summary and Limitations of Grouping Process
Applied. Our approach to identify m/z differences and their
frequency in each data set applied known and routinely used
logical rules within data to group metabolite features related to
the same metabolite. Here, we applied RT similarity and
pairwise peak area correlation analysis to identify m/z−RT
pairs of metabolite features that derive from the same
metabolite; specifically, we applied the following criteria to
each of the 142 data sets independently in step 1 of the
workflow (1) RT difference <2 s, (2) Pearson correlation
coefficient >+0.50, and (3) correlation coefficient p-value
<0.05. GKDE was applied to a m/z difference list created by
integration of data from all 142 data sets. Two hundred
seventy-one high-confidence m/z differences were observed
when applying a grouping of 0.001 (related to m/z) and a
density >0.10 (related to frequency of detection); a grouping
of 0.001 was chosen after a manual assessment of the GKDE
results, which showed that this grouping value would provide
grouping of all data around high-frequency peaks. 209 of these
were manually annotated by the authors. Supplementary File 3
lists the m/z differences, putative adduct, isotope, in-source
fragment and charge state annotations, and the calculated
density for each m/z difference (the higher the density, the
more times it was detected across all studies). The ability to
quantify the number of [M + H]+ and [M − H]− features was
not possible with the approach applied here because the m/z
differences for adducts apply these two ion types as the center
m/z from which m/z differences can be calculated. It is
expected that these two metabolite features would be detected
in all data sets. The reporting of oligomers was also not
possible using our workflow, and these features will add extra
complexity into data sets (for example, see ref 21). Finally, we
applied a 2 s RT window because on plotting raw data for
some studies, we observed RT differences of greater than 1 s
for the same common adducts of a single metabolite, although
this was observed at a low frequency. Applying a smaller RT
window is possible and would impact the frequency of some
reported m/z differences. A wide range of adducts, isotopes, in-
source fragments, charge states, and biological transformations
were annotated. The high number of m/z differences and the
range of annotations (adducts, isotopes, in-source fragments,
charge state) demonstrate the high level of complexity in the
different types of metabolite features that can be created during
and after ESI, observed in metabolomic data sets, and
annotated based on the applied workflow.
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Assessment of the Top 20 Ranked m/z Differences
Based on Their Frequency of Detection. In assessing the
top 20 most frequently detected and annotated m/z differences
(Table 1), seven were related to m/z differences between
isotopes and included the 13C − 12C isotopic differences
observed as a single (rank 1), double (rank 4), and triple (rank
13) charged ions. The presence of doubly and triply charged
ions was not unexpected, although the high frequency in which
they are detected is somewhat unexpected and demonstrates
that multiple charged ions are frequently formed during ESI.
Sodium formate as a neutral non-covalent adduct was the
second most frequently detected m/z difference, and the
disodium formate non-covalent adduct was the ninth highest-
ranked detected m/z difference and demonstrates that
noncharged salts can non-covalently bind to metabolites in
the electrospray process, and this is a more frequent process
than the authors expected. Charged adducts and neutral
adducts are applied in this manuscript to differentiate between
(1) those adducts that directly introduce a charge to the
metabolite to form a charged ion (charged adduct, e.g., [M +
H]+ and [M − Cl]−) and (2) those adducts that do not
introduce a charge directly to the metabolite or neutralize a
charge on a metabolite (neutral adduct, e.g., [M + H + Na
formate]+). Of importance to note is that many of the studies
did not use sodium formate in the mobile phase, and so the
source of sodium formate in these studies was not directly
related to the mobile phase composition; however, formic acid
was applied in the mobile phases and the source of sodium is
expected to be derived from the biological samples and/or

glassware used in sample preparation and mobile phase
reservoirs.
The 35Cl − 37Cl isotopic m/z difference was the third most

frequently detected m/z difference. Chlorine can be present as
a Cl− adduct in negative ion mode or can be present as a metal
salt (e.g., NaCl or KCl) as a neutral adduct in negative or
positive ion mode. This observation suggests that chlorine-
containing charged and neutral adducts are being observed
frequently because a high proportion of metabolites in
databases do not contain chlorine in their molecular formula,
and so this m/z difference cannot be primarily related to the
presence of chlorine in metabolites (for example, in HMDB,
only 1.1% of metabolites contain chlorine). The m/z difference
of 21.9819 was the fifth highest-ranked density, and in positive
ion mode, this suggests that this is related to the [M + Na]+
adduct (e.g., [M + Na]+ − [M + H]+ m/z difference). Rank 18
suggests that potassium ions are frequently detected as [M +
K]+ in the positive ion mode. Rank 15 is defined as the m/z
difference between 6Lithium (atomic mass = 6.0151) and
7Lithium (atomic mass = 7.0160). Although the presence of
lithium in biological matrices and mobile phases is unexpected,
some assays do apply lithium salts in lipidomics assays.
Seven of the top 20 m/z differences were annotated as either

biological transformations and/or in-source fragments, and it is
not easily possible to differentiate between the two, which
complicates the process of converting grouped features into a
correct molecular formula. Biological transformations relate to
features from two different metabolites and so should not be
grouped together in the annotation process, whereas in-source
fragments are derived from the same metabolite and so should

Table 1. Twenty Most Frequently Detected m/z Differences Observed across 142 Datasets

rank
m/z difference
(experimental)

m/z difference
(theoretical) annotation charge annotation class density

1 1.0033 1.0034 carbon (12C and 13C) 1 13C − 12C isotopic m/z differences 48.07
2 67.9874 67.9874 CHO2Na (sodium for formate) 1 neutral adduct 17.26
3 1.9971 1.9971 chlorine (37Cl and 35Cl) 1 isotopic m/z difference�same

element
16.85

4 0.5016 0.5017 carbon (12C and 13C) 2 13C − 12C isotopic m/z differences 15.56
5 21.9819 21.9819 M+H]+ − [M + Na]+ difference 1 m/z difference between two

adducts
13.89

6 0.0001 not annotated not annotate 10.98
7 18.0106 18.0106 H20 (water) 1 in-source fragment and/or

biotransformation
10.45

8 44.0263 44.0262 C2H4O 1 in-source fragment and/or
biotransformation

9.58

9 135.9749 135.9748 CHO2Na + CHO2Na (sodium formate +
sodium formate)

1 neutral adduct 8.92

10 1.0021 not annotated not annotated 8.45
11 14.0156 14.0157 CH2 OR acetate-formate difference 1 in-source fragment and/or

biotransformation
8.07

12 2.0157 2.0157 2H 1 in-source fragment and/or
biotransformation

7.95

13 0.3343 0.3345 carbon (12C and 13C) 3 13C − 12C isotopic m/z differences 6.70
14 26.0156 26.0157 C2H2 1 in-source fragment and/or

biotransformation
6.49

15 1.0009 1.0009 (Li) lithium (7Li − 6Li difference) 1 isotopic m/z difference�same
element

6.40

16 57.9586 57.9586 Na35Cl 1 neutral adduct 6.04
17 46.0055 46.0055 CH2O2 (formic acid) 1 neutral adduct 5.89
18 15.9740 15.9739 [M + Na]+ − [M+ 39K]+ difference 1 m/z difference between two

adducts
5.83

19 28.0312 28.0313 C2H4 1 in-source fragment and/or
biotransformation

5.33

20 2.0062 2.0067 carbon (13C + 13C − 12C + 12C difference) 1 13C − 12C isotopic m/z differences 5.26
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be grouped together. Six of the seven reported m/z values
could be stable in-source fragments (e.g., water loss (18.0106)
and acetaldehyde loss (44.0263)) with the exception of CH2
(14.0156), and therefore we propose that their detection could
be from both sources, biological transformations and in-source
fragmentations. Biological transformations are not a result of
ESI but are the m/z difference between two different
metabolites, which might have the same RT resulting in
them being positively correlated (including through biological
function). Biological transformations were observed across the
RT range, although a high frequency was observed at early
RTs. At these early RTs, many more metabolites are not
retained on the column and co-elute (i.e., many more different
metabolites have the same or a very similar RT (± 2 s))
compared to RTs greater than 90 s where fewer metabolites
coelute in any defined RT window of ±2 s. Therefore, the
probability is higher for two different metabolites to have the
same RT and a positive correlation through biological function.
These two different metabolites should not be grouped
together as two different features of the same metabolite via
a biological transformation. However, this can be observed
especially for metabolites with a RT related to the void volume
and will result in false-positive annotations. To reduce the
number of false annotations for metabolites with early RTs,
either data is not annotated or biological transformations are
not applied for this early RT range. The use of smaller RT
windows in the process will not eliminate all possible biological
transformations, especially for metabolites with RTs related to
the void volume. Two m/z differences were not annotated, and
the m/z difference of 0.0001 is potentially a result of a small
error during data alignment and not a true experimental m/z
difference.

Assessment of All Ranked m/z Differences Based on
Their Frequency of Detection. Although non-charged
(neutral) adducts were expected, the high number of different
neutral adducts was surprising at a count of 28 (see
Supplementary File 4 for 17 routinely detected neutral
adducts).
These included mobile phase solvents (for example,

acetonitrile, methanol, and water but not isopropanol), salt-
based mobile phase modifiers (for example, formic acid and
acetic acid), and other salts including sodium chloride and
sodium and potassium formate. Some salts formed multiple
adducts including sodium formate, potassium formate, and
sodium chloride, and some adducts included multiple forms of
the same salt (e.g., sodium formate + sodium formate as a
single adduct). Many of these neutral adducts are not listed in
the annotation software currently applied. These results
highlight that many different molecules present in the sample
or introduced during sample preparation (for example,
chloroform) and in the mobile phases are not removed from
the liquid droplets through the desolvation process of ESI and
are therefore retained on charged metabolites as a non-
covalent adduct(s). Somewhat surprising was the detection of
m/z differences annotated as HCl (which could be an in-
source fragment also) and NaOH. These can either be m/z
differences between two adducts or a neutral adduct depending
on ion mode. HCl in negative ion mode is related to
differences between two adducts [M − H]− and [M + Cl]−

and is not a neutral adduct, but this is not possible in positive
ion mode and so must relate to a HCl neutral adduct. NaOH
in positive ion mode is related to differences between [M +
H]+ and [M + Na + H2O]+ adducts, but this is not possible in

negative ion mode and so must relate to a NaOH neutral
adduct.30

53 m/z differences were putatively annotated as having a
high probability of being in-source fragments as the molecular
formula relates to a chemical product expected to be stable in
the gas phase. 62 m/z differences were putatively annotated as
biological transformations, and all of these are biological
transformations, which are listed in KEGG.31 Forty-three of
these were also annotated as in-source fragments, which
highlights that a m/z difference can be annotated as two
different classes, as discussed in the previous section. Other
important results to be noted were that (1) 33 of the m/z
differences were putatively annotated as ions carrying two or
more charges, (2) ions containing the following metal atoms
were detected�sodium, potassium calcium, copper, iron, zinc,
and magnesium, and (3) 62 m/z differences were not
annotated by the authors.

Are m/z Differences Consistently Detected as
Investigated in 142 Data Sets? Next, we investigated
how frequently each m/z difference was detected across the
142 data sets. The frequency of m/z differences for each of the
142 data sets is reported in Supplementary File 5.
Subsequently, we removed all m/z differences that were not
annotated and five m/z differences related to the 12C − 13C
isotopic m/z difference for charge states one to four because 14
studies contained zero entries for the 12C − 13C isotopic m/z
difference in charge state one, suggesting that these data sets
had been deisotoped. In Supplementary File 5, all frequencies
of four or less in columns H to ES were replaced with NA to
construct Supplementary Files 6−12 as these were deemed as
being infrequently detected within a single data set. 209 m/z
differences and 142 sample sets remained, as detailed in
Supplementary File 6.
No m/z difference was reported in all 142 data sets. The

maximum number of studies in which a single m/z difference
was reported was 126 studies, the m/z difference related to the
H−Na pair (noting that this was detected as expected in the
positive ion mode but also in negative ion mode). 32 m/z
differences (15.3%) were reported in more than 50% of the
studies, and 120 m/z differences (57.4%) were reported in
more than 20% of the studies. This means that 89 m/z
differences (42.6%) were reported in less than 20% of the data
sets and 38 m/z differences (18.2%) were reported in less than
10% of the data sets. Therefore, m/z differences were
predominantly observed in a small number of the data sets
studied, and therefore, no single list of m/z differences would
be appropriate to apply in all data sets for metabolite
annotation. However, the 32 m/z differences reported in
>50% of data sets would be appropriate to apply in all studies,
although study specific additional m/z difference should be
included also.

Interdata Set Comparison. To further investigate the
differences observed, we grouped the studies based on ion
mode, UHPLC assay type, MS manufacturer, study group
(mammal, microbe, or plant), mobile phase composition, and
mammalian sample type (Supplementary Files 7−12, respec-
tively). 183 m/z differences were reported in five or more
negative ion mode data sets, and of these, 182 were observed
in five or more positive ion data sets. 202 m/z differences were
reported in five or more positive ion mode data sets, and of
these, 182 were observed in five or more negative ion data sets.
In summary, the majority of m/z differences can be detected in
both ion modes. This is of relevance because m/z differences
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calculated for two charged adducts are thought to be ion mode
specific, but the results show that the m/z difference can be
observed in both ion modes and this is important to consider
in metabolite annotation workflows.
170 m/z differences were observed in five or more HILIC/

normal phase assay data sets, and all of these were also
detected in five or more reversed phase data sets. 203 m/z
differences were observed in five or more reversed-phase assay
data sets with 170 of these also being detected in HILIC/
normal phase data sets. These results suggest that assay-type-
specific m/z differences are not available for metabolite
annotation.
93, 61, 203 and 87 m/z differences were reported in five or

more studies for data sets collected applying Agilent (30
studies), Bruker (11 studies), Thermo Fisher Scientific (67
studies), and Waters (49 studies). The 63Cu37Cl − 65Cu35Cl
m/z difference was observed only for Agilent instruments
(with the exception of one occurrence for Thermo Fisher
Scientific instruments). There were 18 m/z differences
detected by Thermo Fisher Scientific instruments, but not
Waters instruments. Only 45 m/z differences were observed in
five or more studies for all four manufacturers. For one MS
manufacturer only (Thermo Fisher Scientific), 80 m/z
differences were detected in five or more data sets but in
four or less other manufacturers' data sets. These observations
suggest that some m/z differences are instrument manufac-
turer-specific but many are observed across different
manufacturers' instruments.
204, 33, and 104 m/z differences were reported in five or

more studies for data sets studying mammals (104 studies),
microbes (10 studies), and plants (26 studies). 126, 82, and 89
m/z differences were reported in greater than 20% of all
studies for mammals, microbes, and plants, respectively.
Interestingly, for those m/z differences reported in greater
than 20% of mammal studies (126), 33 were reported in zero
or one microbe study, 15 were reported in zero or one plant
study, and 11 were reported in zero or one microbe and plant
study. These observations suggest that a small number of m/z
differences are study group-specific but many m/z differences
are observed across all study groups.
Mobile phase composition was available for 112 of the

studies investigated, and the studies were separated into four
groups based on mobile phase similarity. 155 and 123 m/z
differences (of a total of 209) were reported in greater than
20% of studies for two classes ((1) acetonitrile/isopropanol/
water (+ salt or acid modifiers) and (2) acetonitrile/water/
ammonium formate and/or formic acid, respectively).
However, 174 and 143 m/z differences were not reported in
>20% of studies for the other two classes ((1) acetonitrile/
water/ammonium acetate and/or acetic acid and (2)
methanol/water/formic acid, respectively). Therefore, some
mobile phases lead to more m/z differences being reported
than for other mobile phases. However, there is no clear logic
to define why this is being observed, acetonitrile and water are
present in three of four groups and salts and acids are present
in all four groups; no unique solvent or salt or acid is present in
only two of the four groups.
Mammalian sample types (blood/serum/plasma, tissue/cell,

urine) were also investigated for 88 studies. There was no
pattern of m/z differences being reported for only one or two
sample types, and m/z differences not frequently reported for
one sample type were also not frequently reported for the
other sample types. Mammalian sample type does not

influence the types and frequency of the m/z differences
reported.

Recommended Use of Isotopes, Adducts, In-Source
Fragments, and Charge States. From the results described
above, there are lists of isotopes, adducts, in-source fragments,
and charge states that can be applied in the metabolite
annotation workflow, as derived from 142 data sets collected
across the metabolomics community globally. Table 2 lists
each class and recommended entries.
We also recommend the use of 15 isotope pairs related to 10

elements. Of these, all are recommended for use independent
of the ion mode and LC assay type, as all are detected
frequently in all possibilities. All should be applied for all four
MS manufacturers except (1) chlorine (37Cl + 37Cl + 37Cl and
35Cl + 35Cl + 35Cl) and (2) calcium (40Ca and 44Ca), which

Table 2. Recommended Charged Adducts, In-Source
Fragments, Isotope Pairs, Charge State, and Neutral
Adducts to Be Applied in Metabolite Annotation Workflows
Applying Electrospray Mass Spectrometry Instrumentation

charged adducts
in-source
fragments neutral adducts

[M − H] C2H2 acetic acid
[M + 35Cl]− C2H2O2 acetonitrile
[M + 37Cl]− C2H4 acetonitrile + water
[M + H]+ C2H4O ammonium chloride
[M + NH4]+ C2H5NO calcium formate
[M + Na]+ C2H6 chloroform
[M + 39K]+ C2H6O formic acid
[M + 41K]+ C3H4 iron formate

C3H4O2 methanol
Isotopes C3H6 potassium acetate
hydrogen (1H and 2H) C3H6O potassium chloride
lithium (6Li and 7Li) C3H6O2 potassium formate
carbon (12C and 13C) C4H8 potassium formate + potassium

formate
carbon (12C + 12C and
13C + 13C)

C4H8O2 sodium acetate

nitrogen (14N and 15N) C6H10O5 sodium chloride
oxygen (16O and 18O) C6H12O3 sodium chloride + sodium chloride
magnesium (24Mg and
26Mg)

CH2O2S sodium chloride + sodium formate

potassium (39K and 41K) CH2O3 sodium formate
sulfur (32S and 34S) CH3N sodium formate + sodium
chlorine (35Cl and 37Cl) CH4 sodium formate + sodium formate
chlorine (35Cl + 35Cl and
37Cl + 37Cl)

CH4O2 sodium formate + sodium formate
+ sodium formate

chlorine (35Cl + 35Cl +
35Cl and 37Cl + 37Cl +
37Cl)

CH5N2P sodium formate + sodium formate
+ sodium formate + sodium
formate

iron (54Fe and 56Fe) CHNO sodium hydroxide
copper (63Cu and 65Cu) CO water
zinc (64Zn and 66Zn) CO2 water + water
zinc (64Zn and 68Zn) H2

H2 + H2

Charge state H2O +
CO2

1 H2O2P
2 H4O4P2
3 NH3

4 NH3 +
H2O

5 O2
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was only routinely detected on Thermo Fisher Scientific mass
spectrometers, and (3) 63Cu37Cl − 65Cu35Cl m/z difference,
which was only detected for Agilent instruments. Eight charged
adducts are recommended, five in positive ion mode and three
in negative ion mode, and these should only be applied in one
of the two ion modes only. We recommend that [M + H]+, [M
+ NH4]+, [M + Na]+, [M+39K]+, and [M+41K]+ are applied in
positive ion mode only and [M − H]−, [M + 35Cl]−, and [M +
37Cl]− are applied in negative ion mode only. Twenty-three
neutral adducts are recommended and should be applied
across all ion modes, LC assay and MS manufacturer. Thirty-
seven in-source fragments are recommended, and of these, all
should be applied except two for both ion modes (NH3 + H2O
and C2H5NO should only be applied in positive ion mode), all
should be applied for both LC assay types, and a subset should
be applied for each MS manufacturer (it is recommended that
only those reported in five or more studies should be applied).
Sixty-three biological transformations are recommended. All
are recommended for use in both ion modes with the
exception of three (H, C2H5NO, and CH3N), all are
recommended for use in both LC assays types except five
(H, H2O2P, CH3N, C − HN difference, and CH3N − O
difference), and a subset should be applied for each MS
manufacturer (it is recommended that only those reported in
five or more studies should be applied). Importantly, biological
transformations are not related to two features of the same
metabolite, and so this information should be used to ensure
two different metabolites are not annotated as two features of
the same metabolite. Charge states 1−5 are recommended, and
their detection should apply the m/z differences related to the
13C−12C isotope pair.

■ CONCLUSIONS
The data analysis presented characterizes for the first time the
complexity of ESI-derived metabolomic data sets collected in
laboratories globally using different LC and MS instruments,
different sample types, and different LC assays. Complexity is
observed in two different ways: (1) more than 200 annotated
m/z differences related to adducts, isotopes, in-source
fragments were observed demonstrating the large number of
different ion types/metabolite features detected, and (2) no
overall logical pattern of the m/z differences was observed
related to sample type, ion mode, LC assay, MS instrument, or
research organization. Some m/z differences not applied in
metabolite annotation software have been reported for the first
time, including neutral HCl and NaOH adducts.
Although a large number of unique m/z differences were

observed, a much smaller number of m/z differences were
reported for each individual data set. Therefore, the use of
large adduct/isotope/in-source fragmentation lists is not
advisable, as this is expected to increase the number of false-
positive annotations although not necessarily decreasing the
number of true positives (the list of possible metabolite
annotations will increase in size, but the correct annotation will
still be present). It is recommended that the adduct/isotope/
in-source fragmentation lists are derived for each data set by
using a pre-analysis of the data set prior to metabolite
annotation and applying the same strategy as was applied to
identify and annotate m/z differences in the data analysis
presented in this paper.
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Res. 2021, 49 (W1), W388−W396.
(31) Kanehisa Laboratories, 2024, KEGG: Kyoto Encyclopedia of
Genes and Genomes, https://www.genome.jp/kegg/.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.4c00966
Anal. Chem. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.analchem.4c00966?ref=pdf
https://doi.org/10.1021/acs.analchem.1c04336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c04336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.trac.2015.04.002
https://doi.org/10.1038/s41467-023-36520-1
https://doi.org/10.1038/s41467-023-36520-1
https://doi.org/10.1007/s11306-022-01961-0
https://doi.org/10.1021/acs.jproteome.0c00930?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/metabo8030051
https://doi.org/10.1021/acs.analchem.9b05765?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-019-13680-7
https://doi.org/10.1021/acs.analchem.1c01465?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b00770?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b00770?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1038/s41467-021-23953-9
https://doi.org/10.1038/s41467-021-23953-9
https://doi.org/10.1038/s41596-020-0317-5
https://doi.org/10.1007/s11306-022-01947-y
https://doi.org/10.1007/s11306-022-01947-y
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1093/nar/gkac956
https://www.mzcloud.org/
https://doi.org/10.1093/bioinformatics/btr079
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1039/b901179j
https://doi.org/10.1039/b901179j
https://doi.org/10.1021/acs.analchem.7b02380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b02380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btz798
https://doi.org/10.1021/acs.analchem.6b04372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkad1045
https://doi.org/10.1093/nar/gkad1045
https://doi.org/10.1093/nar/gkv1042
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.metabolomicsworkbench.org/
https://www.metabolomicsworkbench.org/
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1021/ci300563h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1093/nar/gkab382
https://www.genome.jp/kegg/
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.4c00966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

