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Abstract: Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more
consecutive pregnancy losses before 24 weeks of gestation. It affects 3–5% of women who
are attempting to conceive. RPL can stem from a variety of causes and is frequently asso-
ciated with psychological distress and a diminished quality of life. By contrast, recurrent
implantation failure (RIF) refers to the inability to achieve a successful pregnancy after
three or more high-quality embryo transfers or at least two instances of egg donation. RIF
shares several causative factors with RPL. The immunological underpinnings of these
conditions involve alterations in uterine NK cells, reductions in M2 macrophages and
myeloid-derived suppressor cells, an increased Th1/Th2 ratio, a decreased Treg/Th17
ratio, the presence of shared ≥3 HLA alleles between partners, and autoimmune disorders.
Various therapeutic approaches have been employed to address these immunological con-
cerns, achieving varying degrees of success, although some therapies remain contentious
within the medical community. This review intends to explore the immunological factors
implicated in RPL and RIF and to analyze the immunological treatments employed for
these conditions, which may include steroids, intravenous immunoglobulins, calcineurin
inhibitors, anti-TNF antibodies, intralipid infusions, granulocyte colony-stimulating factor,
and lymphocyte immunotherapy.

Keywords: recurrent pregnancy loss; recurrent implantation failure; NK cells; T regulatory
cells; Th17; Th1; Th2; macrophages; cytokines; HLA

1. Introduction
Recurrent pregnancy loss (RPL) or recurrent spontaneous abortion (RSA) is defined as

two or more consecutive pregnancy losses before 20 weeks (or 24) of gestation by the Amer-
ican College of Obstetrics and Gynecology and ESHRE Guideline Group on RPL and three
or more losses by the World Health Organization [1–4]. It affects approximately 3–5% of
women trying to conceive [1–4]. RPL can be primary, patients with no successful pregnancy,
or secondary, unsuccessful pregnancies after a successful one [1–4]. The likelihood of a
successful pregnancy depends on maternal age and the number of previous losses [1–4].
The pathophysiology of RPL is complex and involves maternal and fetal factors, possi-
bly with more than one underlying factor [1]. There are many causes of RPL, including
endocrine dysfunctions, uterine pathologies (uterus malformation, polyps, myomas, and
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adhesions), hydrosalpinx (accumulation of fluid in the fallopian tube), chromosomal ab-
normalities (quality of embryos), endometrial dysfunction, endometriosis, thrombophilia,
chronic stress, high body mass index, male factor (sperm quality), infections, as well as
immunological factors [5–9]. RPL, like other pregnancy disorders, is characterized by a loss
of maternal–fetal immune tolerance [10]. The pathogenesis of RPL is unknown in almost
50% of women, and the condition is termed ‘idiopathic’ [11].

Recurrent implantation failure (RIF) refers to the unsuccessful implantation of three
or more high-quality embryos or at least two egg donations [12]. Some causes of RIF are
similar to those of RPL [12]. There are several risk factors for RIF, including advanced
maternal age, smoking status of both parents, elevated body mass index, stress levels,
vaginal microbiome dysbiosis, immunological factors (such as cytokine levels and autoanti-
bodies), chronic endometritis (infection of the endometrium), hydrosalpinx, uterine polyps,
myomas, congenital anatomical anomalies of the uterus, quality of sperm and embryos
(genetic and epigenetic factors), endometrial receptivity, vitamin D deficiency, and genetic
polymorphisms (HLA-G, p53, VEGF) [12–19]. miRNA and long-non-coding RNA (lcnRNA)
have also been shown to be involved [20–22].

The immune system plays an essential role in normal implantation, maternal–placental
fetal crosstalk, and embryo development [23]; thus, immunological alterations can be re-
sponsible for RPL and RIF. The local immune response can also be impaired by vaginal
dysbiosis (VD). VB has been involved in several pregnancy complications, such as mis-
carriage, preterm birth, and adverse outcomes in vitro fertilization (IVF) [16,23–26]. A
non-Lactobacillus-dominant microbiota in the endometrium was associated with reduced
embryo implantation rate, pregnancy/continued pregnancy, and live birth rate [16,23–26].

It is important to note that RPL is linked to an increased risk of various medical condi-
tions observed during pregnancy in those women who have conceived spontaneously [5].
These conditions include gestational diabetes, preeclampsia, placenta previa, placental
abruption, miscarriage, preterm birth, cesarean section, perinatal death, and admission to
the neonatal intensive care unit [27,28]. RPL is also a predictor of long-term cardiovascular
disease and venous thromboembolism. Research has shown that patients with implantation
failure have a significantly higher risk of early spontaneous abortion compared to those
who have had successful implantations [29]. Despite the use of euploid blastocysts, the live
birth rate per embryo transfer is generally reported to be around 50–60% [30].

RPL is also associated with psychological morbidity, poor quality of life of the affected
couple, and a higher rate of marital problems [31] since it is highly frustrating to both
couples and clinicians [32]. Psychological consequences of abortion are not exclusive to one
of the partners and include increased anxiety, depression, post-traumatic stress disorder,
and suicide [33,34]. This psychological condition may affect hormonal and circadian
rhythms and the immune response [35].

This review explores the contribution of various immunological factors to RPL and
RIF and discusses immunological interventions that may be employed in managing these
conditions.

2. Innate Immune Response in RPL and RIF
The innate immune response functions as the initial line of defense against pathogens,

encompassing mechanisms such as phagocytosis, endocytosis, secretion of lytic granules
and protective peptides, and the release of proinflammatory cytokines, chemokines, lipid
enzymes, metabolites, nitrogen, and oxygen radicals, all of which play crucial roles in the
inflammatory process [36]. Furthermore, innate immunity contributes to tissue homeostasis
and remodeling. The following section will describe and analyze the immune cells involved
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in pregnancy, as well as RIF and RPL. Table 1 presents a summary of different cells and
immune responses.

2.1. Natural Killer (NK) Cells

NK cells are large and granulate lymphocytes without antigen T cell receptor (TCR) or
B cell receptor (BCR) [37,38]. There are two different types of NK cells: CD56dim/CD 16+
(pNK) and CD56bright/CD16−(uNK) [36]. pNKs are found in peripheral blood and are
the most cytotoxic of the two, unlike uNKs, which are present in the uterus, produce more
cytokines, and have regulatory functions [37,38]. Endometrial eNK and decidual dNK
cells are also present [37]. The different subpopulations differ in their immune regulatory
activity [37]. eNK cells constitute 30% of the total endometrial lymphocyte population
before pregnancy, while dNK cells comprise up to 70% of the total decidual lymphocytes.
dNK cells produce angiopoietin-2, placental growth factor, and vascular endothelial growth
factor, expressing NKD2G, NKp44, NKp46, and NKp30 [37–39].

Abnormalities in NK cell activity were observed in most patients with RPL. Peripheral
blood NK cell levels were significantly increased in women with RPL compared to con-
trols [37,39,40]. Peripheral blood NK cell quantity was considerably higher in women with
RIF (>18% of the lymphocyte count) than in fertile controls, with considerably activated
NK cells (CD56dim/CD69+) [40,41]. In women with RPL, there are higher numbers of the
cytotoxic CD56dim subtype and fewer CD56bright cells, even if the total cell population is
unchanged [37,42]. The activation level of peripheral blood NK cells (CD69+) can predict
pregnancy outcomes [43–46]. Type 1 cytokines such as IL-1, IL-2, and TNF-α increase
the expression of CD16 on uNK cells and induce cytotoxicity against trophoblasts [47].
Both non-pregnant fertile and normal pregnant women had significantly lower NK cyto-
toxic responses, measured by flow cytometry at an effector-to-target cell ratio (E:T) of 50:1
compared to women with RPL and RIF [48].

Several studies have indicated an association between an increased population of
uterine uNK cells and RPL and RIF [49,50]. A significantly higher frequency of endometrial
CD56+ cells was reported in the mid-luteal phase of women with idiopathic RIF [49,50].
However, another study showed no correlation between uNK cell count and RPL pathol-
ogy [51].

It is generally assumed that there is uncontrolled NK cell endometrial recruitment
and/or failed CD56dim cell conversion to less cytotoxic CD56bright cells may occur in
women with RPL [37,52]. However, a meta-analysis that evaluated uNK cells showed no sig-
nificant difference in women with RPL compared to controls [53]. The CD16−CD56bright
NK cell subset, predominant in the normal decidua and endometrium, was significantly de-
creased in favor of an essential contingent of CD16+CD56dim NK cells in RPL patients [54].
Notably, the percentages of CD56+ cells and CD16+CD56+ cells in the peripheral blood
on the day of embryo transfer were significantly higher in the failed group than in the im-
planted group of infertile women who underwent IVF after intravenous immunoglobulin
treatment [55]. In the endometrium, the increase in the percentage of CD16+CD56dim cells
and the decrease in the percentage of CD16−CD56bright cells in the aborted group were
significant compared to those of the delivered group [56]. Strobel et al. [57] showed that pa-
tients with secondary RPL had lower numbers of circulating CD56dimCD16brightNKG2D+
and CD56dimCD16brightNKp46+ than controls, suggesting that cytotoxicity receptors are
also crucial in the process.

In non-pregnant women with idiopathic RPL or implantation failures, there was
an increase in intracellular IFN-γ/TNF-α (defined as NK1 or inflammatory) and a de-
crease in IL-4/IL-10 (defined as NK2 or anti-inflammatory) in CD56bright pNK cells [58].
Pregnant women with recurrent miscarriages had a higher NK1/NK2 ratio, indicating a pro-
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inflammatory environment in the endometrium, which is detrimental to pregnancy [6,39].
Also, an increase in NK-CD8 expression (>60%) was predictive of IVF failure, while a
decrease in expression (<40%) was significantly predictive of subsequent pregnancy fail-
ure [44]. Higher expression levels of NK-CD8+ were associated with elevated NK frequency,
NK cytotoxicity levels, and CD158a expression in NK cells [44]. In women with RPL or im-
plantation failure, the expression of natural cytotoxicity receptors (NKp46, NKp44, NKp30)
and a2V-ATPase on CD56bright NK cells was significantly upregulated compared to that
on CD56dim NK cells [58]. The differential expression of natural cytotoxicity receptors and
a2V-ATPase in NK cell subsets may suggest dysregulation of NK cytotoxicity and cytokine
production in women with RPL and implantation failure [58].

Proper interaction between maternal KIR and HLA class I, expressed by extravillous
trophoblast cells, is crucial for the implantation and remodeling of uterine spiral arteri-
oles [59]. Polymorphisms of KIR and HLA affect NK cell reactivity and susceptibility
to recurrent miscarriage and preeclampsia. KIR 2DL2 expression was increased in RPL
patients [60], and the association was stronger when there was an increased HLA-C2 allele
frequency [61]. In a meta-analysis, KIR2DS2 and KIR2DS3 were significant risk factors for
RPL, whereas the inhibitory gene KIR3DL1 was a protective factor [62]. A high frequency
of KIR AA haplotypes that lacked activating KIR was found in women with RPL [63–66].
Moreover, patients with a KIR AA haplotype had significantly more risk of miscarriage
if they underwent an IVF procedure compared to those who spontaneously achieved
pregnancy [67]. The presence of HLA C2C2 in the fetus and the KIR AA haplotype in the
mother correlated with implantation failure, recurrent miscarriage, and preeclampsia [62].
The balance of all activating and inhibiting signals between NK cells in the decidua and
trophoblasts is an essential factor and may influence embryo implantation [67]. In another
study, KIR A haplotype carriers experienced fewer pregnancy losses than KIR B haplo-
type carriers after euploid single-embryo transfer. However, this risk was modified when
HLA-C alleles were present in the embryo. High-risk combinations (KIR A + homozygous
C2 and KIR B + homozygous C1) resulted in a 51% increased risk of loss over all other
combinations [67].

NKT cells, which express CD3 and CD56 markers, were increased in RPL [67–69].
Also, Tγδ cells may play a role in the process, as described by Xu and coworkers, 2021 [70].
These cells were shown to produce IL-10 upon stimulation with chorionic gonadotrophin Li
et al., 2024 [71]. However, the roles of NKT and Tγδ cells in RIF and RPL are still unknown
based on the complexity of the different possible subpopulations and the small number of
circulating cells. More research is needed in this area.

2.2. Macrophages and Dendritic Cells

During pregnancy, macrophages and Treg cells maintain immune tolerance between
the mother and fetus. Macrophages can change the decidual microenvironment in ways
that contribute to RIF and RPL [72]. Two subpopulations of macrophages have been
described: M1 (classically activated, induces inflammation and activates immunity) and
M2 (alternatively activated, suppresses inflammation). M2 macrophages are abundant
in the endometrium during the luteal phase and in healthy pregnancies. An M1/M2
macrophage ratio imbalance can lead to complications like preeclampsia, intrauterine
growth restriction, RPL, and RIF [72–76]. In patients with unexplained RPL, macrophages
in the decidua showed higher expression of CD80 and CD86 (costimulatory molecules)
and lower expression of IL-10 compared to controls. Treg cells can inhibit the expression
of CD80, CD86, and IFN-γ in macrophages while increasing the expression of IL-10 [76].
Macrophages (labeled with CD14) in the endometrium were significantly more abundant
in patients with RPL than in controls [76–79]. In patients with RIF, the presence of diffuse
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adenomyosis (endometrial tissue in the myometrium) was associated with a marked
increase in the density of macrophages and natural killer cells in the endometrial stroma
compared to women with mild focal adenomyosis or no disease [79].

Dendritic cells (DC) play a crucial role in embryo implantation by regulating the im-
mune response and aiding tissue remodeling [80,81]. They exhibit a tolerogenic phenotype
and produce indoleamine 2,3-dioxygenase, which boosts the number of Treg cells while
reducing Th1 cell survival and the cytotoxic activity of CD8+ T cells [80,81]. CD80/86
complexes on DCs in the uterus are downregulated and lead to the unresponsiveness of T
cells, resulting in immune tolerance of the fetus. During implantation, artificial depletion
of DCs or a high inflammatory milieu was associated with implantation failure [80,81]. A
lower frequency of ILT4+ DCs was observed in the peripheral blood and endometrium of
patients with RIF or RPL compared to the fertile control group [82]. Also, plasmacytoid
dendritic cells were reduced in the decidual and peripheral blood of patients with RPL [83].
On the other hand, total DCs and myeloid DCs in peripheral blood were higher in patients
with RPL than in controls [84]. In another study, there was no difference in peripheral DCs
between RPL patients and controls in the first trimester of pregnancy [85].

Abnormal antigen presentation by DCs may not only lead to implantation failure and
fetal rejection but also to the generation of autoimmune disorders.

2.3. Polymorphonuclear Cells

Endometrial mast cells are essential components of tissular immune cells and play
roles in endometrial tissue physiology and physiopathology [86,87]. Mast cells interact with
macrophages in the female reproductive system [88]. Their presence was increased when
RPL was activated [89] and was highly responsive to estrogen in endometriosis [90]. Since
macrophage-colony stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor
receptor KIT (KIT) are overexpressed in endometriotic lesions, treatment with pexidartinib,
a tyrosine kinase inhibitor, was recently shown to decrease inflammation in endometrial
tissue [91].

Eosinophils are scarcely present in the normal endometrium; however, they are present
in endometriosis and involved in tissue repair and remodeling [92]. The migration of
eosinophils is then due to an increase in eotaxin [93]. Chemokines are also present in
the inflammatory profile of menstrual effluent [94], suggesting that eosinophils probably
migrate to the tissue for a short time during the normal hormonal cycle. Their roles in RIF
and RPL are not well known.

Neutrophils are absent in the normal endometrium except during menstruation [95].
However, they can be recruited under inflammatory conditions (infections, injuries), with
increased chemokines and IL-17 affecting the endometrial tissue, hampering implantation,
fetal survival, and preeclampsia/eclampsia [96].

2.4. T Cells

T lymphocytes are a crucial element of adaptive immunity. Both subpopulations, T
helper (CD3+/CD4+) cells and T cytotoxic/suppressor (CD3+/CD8+) cells, play essential
roles in fetal antigen recognition and modulation of local immunity [11]. The balance
between Th1, Th2, and Th17 guides immune responses during pregnancy [37,39,42].

The proportion of CD8+ T lymphocytes in the endometrium was significantly reduced
in patients with RPL, and the CD4+:CD8+ ratio was increased [54]. Conversely, the percent-
age of CD8+ T cells in peripheral blood was notably higher in women with RPL compared
to the control group. The CD4+/CD8+ ratio was lower in women with RPL than in their
healthy counterparts [97]. Furthermore, the total proportion of decidual effector memory
CD8+ cells lacking PD-1 expression was elevated in cases of miscarriage [98].
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Women with recurrent miscarriages had significantly higher absolute counts of central
memory CD4+ T cells and CD8+DR+ T cells (activated cytotoxic cells) [99]. The frequency of
NKG2D+ γδ T cells in lymphocytes was negatively correlated with the live birth rate in pa-
tients with RIF [100]. In a genetic study, the RIF group had a higher proportion of activated
memory CD4+ T cells and a lower proportion of γδ T cells in the endometrium [101].

Women experiencing recurrent pregnancy loss (RPL) exhibited a higher frequency
of the variable TCR beta (BV)-chain 19 of T cell receptors and a lower frequency of BV5.2
compared to the control group. This observation suggests that the specific skewed usage of
TCR-BV may be associated with an increased susceptibility to RPL [102].

Regulatory T cells (Tregs), CD4+ CD25+ Foxp3+, have essential roles in the uterus,
particularly during the peri-implantation period, and they are associated with the anti-
inflammatory transition required for embryo receptivity [103]. Treg cells in the decidua and
peripheral blood in unexplained RPL patients were statistically lower than those in control
women, which may induce maternal lymphocyte activation to the fetal allograft [101–103].
Therefore, deficits in the number and/or function of Treg cells have been documented in
cases of miscarriage and unexplained RPL [103–107]. Fewer Treg cells were associated with
implantation failure [89,94] and had an altered phenotype in RPL and RIF [108–110]. Thus,
CD4+ CD25+ Foxp3+ T regulatory cells may serve as a superior pregnancy marker for
assessing miscarriage risk in pregnant women [111].

In decidual tissues from human miscarriage, the mRNA expression of CD28 was
increased, while the expression of CTLA-4 mRNA (the checkpoint marker) was decreased.
Therefore, the ratios of CTLA-4+/CD28+ in miscarriage were significantly lower than in
normal pregnancy, both in peripheral blood and the decidua [112].

The balance between Th17 cells and Treg cells is believed to be crucial for pregnancy
outcomes. Patients with unexplained RPL had higher levels of Th17 cells that secreted
IL-17, GM-CSF, IL-21, and IL-22 in their peripheral blood and decidua [113,114]. There was
a link between elevated Th17 cells and decreased CD4+ CD25+ Treg cells, which could
contribute to developing unexplained RPL [104,109–111,113,114] and RIF [115,116]. The
FoxP3/ RORγt ratio in fertile women was higher than in RIF patients [116].

Patients with RPL and positive anti-thyroid peroxidase (anti-TPO) antibodies showed
a higher Th17 frequency than healthy control and anti-TPO+ control groups [117]. PD-1
+ Th1 and PD-1 + Th17 cells were significantly lower in the RPL group than in controls,
indicating a potential increase in Th1 and Th17 activity in women with RPL [118].

Wang and coworkers [119] reviewed the different T cell populations, including Th9,
Th22, and T follicular cells (Tf), which were not discussed before. Th9 along with Th2 are
essential to providing a tolerogenic milieu for the implantation phase [119]. Th22 protects
trophoblasts from infections but also enhances trophoblast survival [119]. The role of Tf cells
is partially known since regulatory Tf helpers have been proposed to aid in implantation
and pregnancy [119]. Still, the roles of the other subpopulations are not well described
in humans. In summary, the cytokines produced in the endometrial microenvironment
during implantation and decidua formation are crucial for zygote survival. More research
is required to understand the process of implantation.

2.5. B Cells

The role of B lymphocytes in RPL has been less studied. B cells are believed to con-
tribute to the success of pregnancy by decreasing the secretion of poly-reactive natural
antibodies and producing protective blocking asymmetric antibodies [11]. A decrease
in protective IgG maternal cytotoxic antibodies has been linked to RPL [120,121]. Addi-
tionally, anti-phospholipid antibodies were associated with RPL and preeclampsia [122].
Antibodies from women with RPL recognized specific endometrial antigens, which was
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not observed in normal multiparous women [121,122]. For more information, please refer
to the autoimmunity section. On the other hand, B lymphocytes (CD20+) were increased
in the endometrium of patients with RPL [55,123], and infertile patients had significantly
decreased CD27+ B cells in their peripheral blood [123,124].

B cells have been associated with RPL [125]. However, the mechanism by which
B cells are increased in the endometrium and peripheral blood of women with RPL is
unknown. A decreased number of IL-10-positive B cells in the endometrial cavity has
been related to RPL [125,126]. Even though IL-10 secretion in the endometrium may
be protective for the fetus, there are still questions about the roles of B1 and B2 cells in
normal pregnancy and RPL [125]. B1 cells are usually protective in tissues, producing
IgM, while B2 cells are peripheral B cells that generate IgG and IgE antibodies [125]. The
changes in B cell populations in the endometrial cavity may also be critical in producing
deleterious antibodies to the fetus [125]. B cells may also present T cell antigens, generating
an allogeneic response. In summary, many of the functions of B cells in the endometrial
cavity are unknown; however, they may become an interesting pharmacological target to
increase fertility and pregnancy success.

2.6. Myeloid Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are a diverse group of cells of myeloid origin
with an immature state and immunosuppressive function. There are two groups of MDSCs:
monocytic MDSCs (M-MDSCs) expressing CD33+HLA-DR-/lowCD11b+CD14+CD15− and
polymorphonuclear MDSCs (PMN-MDSCs) expressing CD33+HLA-DR−/lowCD11b+
CD14−CD15+ [127]. MDSCs are increased in the uterus and peripheral blood during
gestation [127]. In humans, PMN-MDSCs accumulate in the peripheral circulation of
healthy pregnant women compared to non-pregnant controls [128,129]. In addition, in
the peripheral blood of pregnant women, M-MDSCs are elevated [130]. On the contrary,
in patients with RPL, MDSCs were reduced in the decidua and peripheral blood [128]
and in the progesterone response [131]. In addition, patients with RIF showed significant
reductions in blood PMN-MDSCs and M-MDSCs [132]. However, other authors found
an increase of M-MDSCs in the peripheral blood of patients with RIF or RPL compared
to controls and a negative correlation between M-MDSCs and Tregs in patients with
RIF [132–134]. Screening by flow cytometry of these cell populations is not routine in RPL
patients; however, it may be recommended to include the analysis of peripheral blood cells,
such as T regulatory cells, Th17, and NK cells [134]. If possible, the presence of these cells
should be confirmed in local tissue.

Table 1. Summary table of the different immune cells in RPL.

Cell Type Physiological Function Described Dysfunction in RPL Ref.
Innate immunity The response does not involve antigen presentation.

[36]

NK cells

Elimination of abnormal cells and
pathogens. The tolerogenic

response to fetus uterine and
decidual NK cells differs from

that of peripheral NK cells.
Elimination of abnormal cells and

pathogens.

Decrease in tolerogenic role and
increase in cytotoxic response.

[37–57]
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Table 1. Cont.

Cell Type Physiological Function Described Dysfunction in RPL Ref.

NKT cells
Elimination of abnormal cells and

pathogens.

Increased cytotoxic function and
involvement in local

inflammation.
[67,69]

Tγδ cells
Control tissue homeostasis,

phagocytosis of pathogens, and
antigen presentation.

Increased cytotoxicity and
involvement in local

inflammation.
[70,71]

Macrophages
Present in the uterus.

Involvement in tolerogenic
responses.

Proinflammatory response and
secretion of cytotoxic cytokines

increase reactive oxygen and
nitrogen species.

[72–79]

Dendritic cells Efficient antigen presentation. Abnormal antigen expression.
[80–85]

Mast cells Present in the endometrium
Abnormal activation and

proinflammatory role.
[86–90]

Eosinophils Present in endometrium in part of
the hormonal cycle.

Unknown. [92,93]

Adaptative immunity Requires antigen presentation. Highly selective.
[36]

T cytotoxic cells
Th-1

Elimination of unwanted cells.
Proinflammatory response.
Activation of B cells. IgG

production.

Involved in fetal rejection.
Involved in fetal rejection.

[97–99]
[101,102]

Th-2 Pro allergen response. Activation
of B cells. IgE production.

Antagonism of Th1. [101,102]

Th-17 Proinflammatory response. Fetal rejection. Induces neutrophil
migration.

[106,107]

T regulatory cells Tolerogenic role to the fetus. A decrease in these cells facilitates
Th1 and cytotoxic functions.

[103,108,119]

B cells
B1 cells produce IgM against
pathogens and protect tissue.

Decrease in B1 cells and increase
in B2 cells in endometrium.
Autoantibody production?

[121–126]

Myeloid suppressive
cells

M-MDSC and PM-MDSC are
involved in tissue tolerogenic

response.

Impaired amounts of these cells
in the endometrium.

[127–134]

3. Cytokines
Dysregulation of the interleukin network jeopardizes implantation, leading to

RIF [135]. The overexpression of TNF-α and NF-κB also adversely affects implantation
and leads to RIF. High ratios of IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/TGF-β have been
observed in RIF and are associated with adverse outcomes of implantation [135–137].
Th1-type (TNF-α, IFN-γ, IL-2) immunity to trophoblasts seems to be associated with unex-
plained recurrent abortion. It may play a role in reproductive failure, whereas T-helper 2
(Th2, IL-4, IL-5)-type immunity may be a natural response to trophoblasts, contributing to
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successful pregnancy [119,135–140]. In the peripheral blood and decidua of patients with
RPL, the secretion of type-2 cytokines was decreased [141]. Similarly, the Th1/Th2 cytokine
ratio was significantly higher in women with RIF than in healthy ones [138,142].

In previous studies, elevated Th17/Treg ratios were reported during the implantation
window in patients with RPL [143–145]. We observed increased serum levels of IL-17 in
patients with RPL compared to controls [105]. Additionally, high levels of IL-1β were
observed in the uterine fluid of patients with RIF compared to fertile controls. At the same
time, concentrations of IFN-γ and IL-10 were significantly lower [144–146]. Furthermore,
IL-10 and TGF-β secretion was markedly lower in RIF patients, while IL-17 and IL-23
secretion was considerably higher in these patients than in controls [145]. Also, IL1-β, IL-6,
IL-17, TNF-α, and the frequency of Th17 cells were increased in RIF patients with metabolic
syndrome compared to RIF women without MS and the control group [146]. Endometrial
stromal cells and whole endometrial cells of normal fertile women produced higher levels
of IL-6, IL-8, and TGF-β than the RIF group. Additionally, endometrial stromal cells of
normal fertile women produced lower levels of IL-10 compared to the RIF group [116,135].

Patients with RPL were found to have lower levels of IL-22 in the uterine decidua,
which may contribute to a disruption in decidual homeostasis and ultimately lead to early
pregnancy loss [147]. Similarly, the expression of IL-27 was lower in the deciduas of patients
with RPL than in control subjects. IL-27 inhibited IL-17 expression and enhanced IL-10
expression in a dose-dependent manner [148]. Gene polymorphisms of IL-17 and IL-27
have also been associated with preeclampsia [149].

A study by Zhao et al. [150] found that serum IL-33 and soluble IL-33 receptor ST2
concentrations were higher in women with RPL. This suggests that these biomarkers could
be used to predict and treat RPL. Additionally, research by Yue et al. [151] showed that
levels of serum IL-35 were significantly lower in women with RPL compared to those in
early normal pregnancy.

Leukemia inhibitor factor (LIF) plays a vital role in various physiological processes
during pregnancy, and its decrease was associated with RIF, as highlighted in a review
by Mrozikiewicz et al. [17]. Similarly, LIF expression was altered in women with RPL, as
reported by Karaer et al. [152].

A study conducted by Raghupathy et al. [153] demonstrated that ex vivo exposure to
progesterone-induced blocking factor (PIBF) significantly increased the production of type
2 cytokines IL-4, IL-6, and IL-10 in lymphocytes from patients with RPL as compared with
the production of IL-4 and IL-10 in lymphocytes from healthy pregnant women without
affecting type 1 cytokine levels. PIBF decreased the type 1:type 2 cytokine ratio, indicating
a shift toward a Th2 bias [153]. PIBF did not influence cytokine production in non-pregnant
women, highlighting its role in inducing a type 1 to type 2 cytokine shift in pregnancy.
Moreover, Kashyap and coworkers [154] showed that the levels of PIBF were reduced in
women with RPL probably due to decreased transcription of progesterone receptor isoform
B. The downregulation of receptors probably does not only affect the Th2/Th1 cytokine
ratio but also can affect other immune cells, such as NK cells; more research is required in
this topic.

Data analysis using PCR array found significantly higher expression of various cy-
tokines and related factors (IL-6, IFN-γ, IL-17A, IL-23A, IFN-α1, IFN-β1, CD40 L, CCR4,
CCR5, CCR6, CXR3, CCL2, IL-2, TLR4, IRF3, STAT3, RAG1, IFNAR1) in women with
unexplained RIF compared to controls [155]. The study found lower expression of other
factors (IL-1β, IL-8, NF-kB, HLA-A, HLA-E, CD80, CD40) in the unexplained RIF group
compared to controls [155]. The authors concluded that the inflammatory responses based
on pNK cells, the Th17 signaling pathway, and the TLR signaling pathway were activated
in RIF [155]. Other factors may also be involved in the process since local secretion of
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cytokines involves not only stromal cells, lymphocytes, and epithelial cells. Moreover, the
impact of the local microbiota can also affect cytokine secretion [26].

4. HLA in RPL and RIF
Haplotype analysis revealed that couples dealing with RPL had a significantly higher

level of sharing MHC fragments among partners than control families [156–159]. In the
Chinese population, the DQB1 × 0604/0605 allele may confer susceptibility to unexplained
RPL, while the DQB1 × 0501/0502 allele may protect women from it [159]. Nevertheless, it
was found that a high rate (3 or more) of HLA gene loci sharing (HLA-A, B, C, DR, DQ) in
couples was associated with RIF [157–162].

Killing inhibitory receptors (KIRs) are critical in several pathologies. When the re-
ceptors bind the counterpart HLA ligand, a cytotoxic response may be decreased (L long
KIRL) compared to others that may activate cells (S short KIRs) [163]. Decreased ligands
for inhibitory KIRs could lead to insufficient inhibition of maternal uterine NK cells toward
trophoblasts, thereby contributing to the pathogenesis of RPL [66,163,164]. The authors
showed [164] that KIR 2DL2 (an inhibitory KIR)-positive Caucasian women with RPL and
their partners had lower allele frequencies of HLA-C1 (the ligand for KIR2DL2) and a
higher frequency of HLAC2 (ligand for another KIR receptor) as compared to KIR2DL2-
negative women; thus, there was no KIR-related inhibition of cell killing [164,165]. These
studies prompted the analysis of KIR genetics and their relationship with alloimmune
reproductive failure. However, only a recent report has shed some light on the possible
benefits of genetic screening [166].

The human leukocyte antigen G is a nonclassical HLA protein, displaying limited
polymorphism, and is expressed in trophoblasts [167]. HLA-G has several splice variants
(four membrane bound and three soluble isoforms) and immunomodulatory functions
during pregnancy [167]. The HLA-G 14 bp insertion in the 3′UTR allele may increase the
risk of RIF in Caucasians [168]. Soluble serum HLA-G (sHLA-G) levels were associated
with RIF [169]. Patients carrying particular haplotypes differed in the secretion of sHLA-
G [168]. A decrease in sHLA-G level after embryo transfer was observed when embryo
transfer resulted in a lack of pregnancy [170].

While HLA analysis may not be at the forefront of research in RIF and RPL right now,
it is an intriguing field brimming with unanswered questions just waiting to be explored.
The potential for groundbreaking discoveries is immense.

5. Immune Checkpoints in RPL and RIF
Cell expression and soluble forms of immune checkpoint proteins in RPL and RIF have

recently gained attention [171,172]. Not only PD-1/PD-L1/PDL2 but also OX-40/OX-40L,
TIM-3, TGIT, and LAG-3 [171–175]. The rationale is that the expression of checkpoint
inhibitors is related to tolerance in the implantation site, and their decreased expression is
related to cell activation, consequent inflammation, and cytotoxicity. The expression of these
markers in circulating lymphocytes or the assessment of soluble molecules could provide
good biological markers for determining the severity of the disease and the effectiveness of
the therapeutic response.

6. Autoimmunity
Autoimmune diseases are characterized by immune system dysregulation, leading to

humoral or cell-mediated immune responses against self-antigens. Several autoimmune dis-
eases have been linked to RPL and RIF, particularly antiphospholipid syndrome, systemic
lupus erythematosus, thyroid autoimmunity, and celiac disease. Furthermore, antinuclear
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antibodies, anti-thyroid peroxidase antibodies, and anti-phospholipid antibodies have been
associated with recurrent pregnancy loss [176–179].

6.1. Antiphospholipid Antibodies (aPL) and Antiphospholipid Syndrome

Antiphospholipid syndrome is an autoimmune disease characterized by vascular
thrombosis (venous or arterial) and/or pregnancy morbidity (pregnancy loss, fetal demise,
premature birth before 34 weeks of gestation due to preeclampsia or placental insufficiency)
associated with persistent antiphospholipid antibody positivity [180].

The presence of antiphospholipid antibodies, such as lupus anticoagulant (LAC) and
anticardiolipin (aCL), has been closely linked to RPL [181–185]. The prevalence of aPL
among women with RPL was about three times higher than that in fertile women [186].
Embryonic loss was more common in women with aCL IgM and women with double
positive aPL (aCL + anti-β2-glycoprotein I or/and LAC). Clinical pregnancy loss was more
common in women with positive anti-β2-glycoprotein I IgM. However, positive levels of
aPL were rare in women with one or two prior pregnancy losses and were not associated
with an increased rate of subsequent loss [187].

The presence of antiphospholipid antibodies (aPL) was linked to increased implanta-
tion failure after IVF, according to studies by Papadimitriou et al. [188] and Jarne-Borràs
et al. [189]. However, a meta-analysis by Tan XF et al. [190] showed that although aPL
positivity did not decrease the clinical pregnancy or live birth rate, it also did not increase
the miscarriage rate in women undergoing IVF. The presence of aPL may inhibit the expres-
sion of LIF and homeobox A 10 (HOXA10) in the endometrium and influence pinopode
development. This indicates that aPL positivity is associated with impaired endometrial
receptivity, resulting in RIF, as found by Tan X and coworkers [191].

6.2. Systemic Lupus Erythematosus and Other Autoimmune Diseases

Women diagnosed with systemic lupus erythematosus (SLE), pemphigus, scleroderma,
undifferentiated connective tissue disease, and rheumatoid arthritis face an elevated risk of
fetal loss [192]. Specifically, women with SLE exhibited an increased likelihood of experi-
encing various pregnancy-related complications, including but not limited to pregnancy
loss, intrauterine fetal demise, preterm birth, fetal intrauterine growth restriction, and fetal
congenital heart block [193,194]. In patients with SLE, diminished levels of complement C3
and C4 during the first trimester were correlated with a heightened risk of pregnancy loss.
Notably, the risk of pregnancy loss may precede both the diagnosis and the manifestation
of SLE [195].

Antinuclear antibodies (ANAs) penetrate cell membranes and produce cytotoxic
effects. These effects are related to interrupting mitosis and damaging embryo quality,
which can result in RIF [196]. The presence of ANAs in patients was correlated with an
increased possibility of RIF after IVF, especially in older patients [197–200]. ANAs found
in patients without defined autoimmune diseases increased the risk of RPL [179]. A meta-
analysis showed a statistically significantly higher risk of RPL (more than threefold higher)
in patients who were ANA-positive compared with those who were ANA-negative [196].

Primary Sjögren’s syndrome is responsible for an increased risk of spontaneous abor-
tion [201]. Also, this disease is related to preterm delivery, congenital heart block, and
pre-eclampsia [201,202].

A retrospective cohort study utilizing the TriNetX research network indicated that
a prior diagnosis of RPL was linked to an increased risk of a subsequent diagnosis of
an autoimmune condition, typically occurring between one and ten years following the
diagnosis of RPL [203]. This study suggests a possible link between abnormal antigen
presentation and RPL.
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6.3. Celiac Disease

Celiac patients, irrespective of their nutritional status (normal or under/overweight),
presented a higher percentage of spontaneous abortions [204,205]. The incidence of idio-
pathic RPL doubled in patients suffering from celiac disease compared to healthy popu-
lations [204,205]. In a meta-analysis, the odds ratio value for celiac disease was 5.82 for
women experiencing RPL [206]. Also, women with celiac disease had significantly higher
risks of preterm birth, intrauterine growth restriction, stillbirth, low birth weight, and small
for gestational age [207].

The pathogenic mechanisms that explain RPL in celiac disease could be nutrient
deficiency (lack of elements like zinc, selenium, and folic acid) and the ability of anti-
transglutaminase antibodies (which are present in celiac patients) to impair trophoblast
invasiveness and increase their apoptosis and alteration of endometrial endothelial cell
differentiation by inhibiting the activation of metalloprotease-2, disorganizing cytoskeleton
fibers, and changing the physical and mechanical properties of cell membranes [208,209].

The HLA-DQ2/DQ8 polymorphism, which is associated with celiac disease, was
more common in patients with RPL without a history of celiac disease than in control
women without a history of miscarriage (52.6% vs. 26.6%) [210]. Patients with RPL
and HLA-DQ2/DQ8 polymorphism had higher levels of anticardiolipin IgG and anti-
peroxidase antibodies in comparison with patients with RPL without HLA-DQ2/DQ8
polymorphism [209]. Also, D’Ippolito et al. [210] found a statistically significant associ-
ation between ANA and HLA DQ2/DQ8 positivity in women with RPL. Still, they did
not observe a relationship between this polymorphism and positivity of anticardiolipin,
anti-thyroglobulin, anti-thyroid peroxidase, anti-β2-glycoprotein, and anti-prothrombin
antibodies [210,211].

6.4. Thyroid Autoimmunity

Thyroid autoimmunity, defined by the presence of autoantibodies against thyroid
peroxidase and/or thyroglobulin (ATAs), is associated with RIF and RPL. This disorder
causes thyroid function abnormalities and immune system imbalances [192,212]. ATAs can
bind to the embryo’s surface and interfere with its development [212]. The cross-reactivity
of ATAs with antigenic determinants of the egg, embryo, and placenta is another suggested
mechanism leading to implantation and pregnancy complications [212]. Patients who test
positive for ATAs exhibited significantly lower rates of fertilization, implantation, and
pregnancy compared to those without these autoantibodies. In patients with RPL, the
prevalence of anti-thyroglobulin antibodies was higher than in women without RPL [213].
In addition, the abortion rate was significantly higher in patients with ATAs [214,215]. The
presence of ATAs may serve as a secondary marker for potential autoimmune disease
rather than being the actual cause of pregnancy loss [214,215]. Moreover, increases in the
population of endometrial T cells and INF-G and decreases in IL-4 and IL-10 have been
observed in women with autoimmune thyroid diseases who experienced reduced fertility
and had ATAs compared to controls with no ATAs [216].

In two randomized controlled trials, the use of levothyroxine in euthyroid women
with thyroid peroxidase antibodies did not result in a higher rate of live births compared to
a placebo [217,218]. However, a clinical trial showed that treatment with levothyroxine de-
creased the risk of pregnancy loss and increased the live birth rate in RPL pregnant women
who were positive for thyroid peroxidase antibodies or subclinical hypothyroidism [219].
Two metanalyses, one that included 787 infertile couples undergoing IVF/ICSI [220] and
the other that contained fifteen eligible studies with 1911 participants [221], support the
use of therapy in RPL.
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To clarify the point, the guidelines of the European Society of Human Reproduction
and Embryology (ESHRE) include hypothyroidism without and with autoimmunity [222].
Even though the evidence regarding the treatment effects of levothyroxine for women
diagnosed with subclinical hypothyroidism and RPL remains inconclusive, medically de-
fined hypothyroidism that occurs before conception or during the early stages of gestation
should be managed with levothyroxine. While treatment for subclinical hypothyroidism
may potentially decrease the risk of miscarriage, it is essential to weigh the possible benefits
against the associated risks. In women with RPL and subclinical hypothyroidism who
achieve a subsequent pregnancy, it is advisable to assess thyroid-stimulating hormone
(TSH) levels during early gestation (between 7 and 9 weeks). Should hypothyroidism be
confirmed, treatment with levothyroxine should be initiated. Nonetheless, women with
thyroid autoimmunity and a history of RPL and TSH levels should also be evaluated during
early gestation, and any identified hypothyroidism should be treated with levothyroxine.
Conversely, euthyroid women who possess thyroid antibodies and have experienced RPL
should not receive levothyroxine treatment.

More research is required to understand the importance of these autoantibodies in RIF
and RPL.

7. MicroRNAs (miRNAs) and RPL
MicroRNAs (miRNAs) affect immune cell differentiation, proliferation, and func-

tion [223]. They are short, non-coding RNAs, typically 22–24 nucleotides in length, that
regulate protein production by inhibiting mRNA translation or inducing mRNA degrada-
tion through binding to the 3′ untranslated region of mRNA (UTR) [223]. They play critical
roles in differentiating T helper cells and developing Treg cells [223–225]; thus, the balance
of miRNA is crucial for both cells in RPL and RIF.

The dysregulation of miRNA expression is associated with RPL [226–228]. In a re-
cent review, 75 different miRNAs showed a significant difference in expression between
women with RPL and the control group. In total, 53.33% of these miRNAs had increased
expression, 28% had decreased expression, and 18.66% had both increased and decreased
expression, depending on the study [227]. In a study using plasma samples, 77 miRNAs
were upregulated and 31 were downregulated in the RPL group compared with the regular
pregnancy group [228].

In women who had experienced miscarriages but had normal karyotypes, there was a
noted overexpression of miRNA-133a [229]. This overexpression may lead to a reduction in
HLA-G protein expression [229]. This reduction may affect the protection of the fetus from
possible aggression from immune cells [229]. Additionally, miR-30e, miR-34a-3p/5p, miR-
141-3p/5p, miR-24, miR-486-3p, miR-6126, and miR-6754-3p were found to be dysregulated
in the decidual natural killer (dNK) and peripheral natural killer (pNK) cells of RPL
patients [230].

Specific single nucleotide polymorphisms (SNPs), such as miR-21 rs1292037 and miR-
155-5p rs767649, have been linked to higher rates of RPL [230]. However, only one report
exists, and it needs to be confirmed.

Twelve differentially expressed miRNAs were identified in the sperm of male partners
of idiopathic RPL patients; eight miRNAs (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-
5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p)
were upregulated and four (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and
hsa-miR-520b-5p) were downregulated [231].

This topic is relatively new, and there is still room for improvement; the roles of
extracellular vesicles and the modulation of different types of RNA in aging and senescence
can be crucial for implantation and fetus survival [232].
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8. Microbiota in RPL and RIF
Despite uncertainty in the causal relationship between the endometrial microbiota

and early pregnancy loss, there is some evidence that the endometrial microbiota may be
predictive of RPL [233]. RIF and RPL are associated with increased microbiome diversity
and a loss of Lactobacillus dominance in the lower female reproductive system [26,233–235].
First-trimester miscarriage has been associated with a reduced prevalence of Lactobacillus
spp., which dominates the normal vaginal microbiota [236]. A vaginal microbiota depleted
of Lactobacillus spp. was related to pro-inflammatory cytokine (IL-1β, IL-6, IL-8) levels
most strongly in euploid miscarriage compared to viable term pregnancy [237].

In a study by Peuranpää et al. [238], it was found that Lactobacillus crispatus was less
abundant in the endometrial samples of women with RPL compared to the control group.
Additionally, Gardnerella vaginalis was found to be more abundant in the RPL group than in
the controls in both endometrial and vaginal samples. Furthermore, Vomstein et al. [239]
observed a lower abundance of Lactobacillaceae in RPL and RIF patients at three points
of the menstrual cycle. They found increases in Proteobacteria in the RPL and RIF groups
toward the end of the menstrual cycle [239]. On the other hand, the RIF group exhibited a
remarkably diverse composition, unlike the control and RPL groups [240].

The presence of a non-Lactobacillus-dominated endometrial microbiota, <90% Lac-
tobacillus spp. and >10% of other bacterial taxa, in a receptive endometrium has been
associated with significant decreases in the rates of implantation, pregnancy, ongoing
pregnancy, and live birth among infertile patients undergoing in IVF [240]. The increased
abundances of specific taxa—such as Gardnerella, Haemophilus, Klebsiella, Neisseria, Staphy-
lococcus, Streptococcus, Atopobium, Bifidobacterium, and Chryseobacterium—in endometrial
samples were linked to instances of abortion or absence of pregnancy [240].

A relative dominance of Ureaplasma species in the endometrial microbiome was an
independent risk factor for subsequent miscarriage with normal karyotype in a cohort of
patients with a history of RPL [241]. Proteobacteria and Firmicutes were significantly elevated
in RPL patients compared to women requesting termination of normal pregnancy [239,241].
On the other hand, the abundances of Bacteroides and Helicobacter in the vagina in the
early embryonic arrest group were higher than in the normal pregnancy group, and the
abundance of Lactobacilli in the normal pregnancy group was higher than in the embryonic
arrest group. In this last group, the abundance of Lactobacillus inners was significantly lower
than in the normal pregnancy group [242].

In light of the compelling evidence presented, it is recommended that screening for
the vaginal and endometrial microbiota, as well as for papillomavirus, which influences the
local microbiota, be conducted routinely in patients who are preparing to undergo medical
treatment for infertility and IVF.

9. Immunological Treatment of RPL and RIF
Different treatments have been used in both RIF and RPL. Table 2 summarizes the

various therapies found in the literature. The American Society of Reproductive Medicine
(ASRM) and the ESHRE have published guidelines based on the evidence found in the
literature, and the recommendations are based on strong or weak proof of the therapy
analyzed [222,243]. The ASRM only validates the use of heparin and aspirin in patients
with antiphospholipid syndrome. The society does not recommend any specific treatment
for other RPL cases. On the other hand, the ESHRE has some recommendations that will
be discussed at the end.

Table 2 summarizes the therapeutic approaches discussed in the literature to provide
the reader with a comprehensive background on the subject.
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9.1. Corticosteroids

Prednisolone is beneficial for women who have experienced miscarriage and have
increased numbers of NK cells. This steroid reduces the frequency and function of NK
cells [122,244,245]. However, one study reported a live birth rate of 60% with prednisolone
compared to 40% with a placebo, but this difference was not statistically significant [246].
The difference may be related to Tang and coworkers’ general screening and follow-up [246].

Prednisolone also improved implantation in IVF patients with high peripheral CD69+
NK cells [247]. In a retrospective study involving RPL and RIF, prednisolone signifi-
cantly reduced uterine NK cells, although normalization was achieved in only 48.3% of
patients [248]. Furthermore, there was no significant difference in pregnancy outcomes or
complications between women who received prednisolone and those who did not [248].
However, a meta-analysis provided evidence that prednisolone therapy improved preg-
nancy outcomes in women with RPL [249]. Likewise, a network meta-analysis found
that aspirin combined with glucocorticoids improved the miscarriage rate in patients with
RIF [250]. Patients with RIF prednisone treatment had increased Treg cells and an improved
Th17/Treg ratio [251–253].

In a randomized controlled trial, the fertilization, pregnancy, and implantation rates
were significantly higher in patients with RIF and positive for antinuclear antibodies treated
with prednisone (10 mg/day) and aspirin (100 mg/day). In comparison, the abortion rate
was markedly higher in the non-treatment group [254]. Low-dose corticosteroids was effec-
tive for autoantibody (antinuclear antibodies, anti-DNA, or lupus anticoagulant)-positive
women with RIF, reaching significant increases in pregnancy and implantation rates [254].
However, among patients with recurrent implantation failure without autoimmunity, treat-
ment with prednisone did not improve the live birth rate compared to a placebo, and
the use of prednisone may have increased the risk of preterm delivery and biochemical
pregnancy loss [255].

In refractory antiphospholipid antibody-related pregnancy loss, using first-trimester
low-dose prednisolone (10 mg/day) alongside conventional treatments such as aspirin and
heparin may be beneficial [256,257]. For patients with previous IVF failure and significant
serum anti-ovarian antibody levels, prednisolone (0.5 mg/kg) has been shown to improve
pregnancy, implantation, and live birth rates [258]. However, it is essential to be aware of
the potential side effects of steroids, which include insomnia, increased appetite, headache,
palpitations, hirsutism, nausea, and mood alterations [246,247]. Furthermore, the use of
steroids can increase the risk of gestational diabetes mellitus, preeclampsia, preterm birth,
and low birth weight [259,260].

9.2. Hydroxychloroquine

Hydroxychloroquine has been found to have anti-thrombotic, anti-inflammatory, and
immunomodulatory properties [261]. Studies have shown that in patients with antiphos-
pholipid syndrome (APS) and miscarriage, the addition of hydroxychloroquine to conven-
tional treatment improved live birth rates and reduced pregnancy loss [261–265]. It was
observed that the effects of hydroxychloroquine on the live birth rate were dose dependent,
with the best rate at 400 mg daily (94%) compared to 200 mg daily (79.5%) in patients with
refractory APS [265]. Furthermore, patients with persistent positivity for aPL antibodies
who received hydroxychloroquine (200–400 mg/day) had reduced adverse pregnancy out-
comes, especially fetal loss at >10 weeks of gestation and placenta-mediated complications
such as preeclampsia, placental abruption, and intrauterine growth retardation [266,267].

In RIF women, hydroxychloroquine enhanced Tregs and diminished Th17 responses.
However, it did not improve pregnancy outcomes [268]. In a recent non-randomized study,
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exposure to hydroxychloroquine in early pregnancy for women with a history of RPL did
not seem to prevent further miscarriages [269].

There is still room for improvement in corticosteroid therapy in women with an
autoimmunity spectrum.

9.3. Calcineurin Inhibitors

Calcineurin inhibitors are a group of immunosuppressive agents that specifically in-
hibit calcium/calmodulin-dependent phosphatase calcineurin in blocking T cell activation,
cytotoxicity, B cell growth, and antibody production. Tacrolimus and cyclosporine A are
calcineurin inhibitors. Tacrolimus binds to FK-binding protein-12 to produce a complex
that inhibits calcineurin, while cyclosporine A binds to cyclophilin to generate a complex
that does the same [270]. These drugs have not been associated with an increased risk of
birth defects [271].

In a meta-analysis study, treatment with calcineurin inhibitors (cyclosporine and
tacrolimus) in patients with RPL or RIF increased the live birth rate and clinical pregnancy
rate and decreased the miscarriage rate compared to the control group [272,273]. Treatment
with low-dose cyclosporine A (100 mg or 150 mg/day for 30 days or 6 months, initiated
after a positive pregnancy test) increased the live birth rate in RPL patients and reduced the
miscarriage rate [274,275]. In the cyclosporine group, there were significant decreases in Th1
frequency, Th1/Th2 ratio, T-bet mRNA expression (Th1 marker), INF-γ (Th1 cytokine), and
TNF-α (Th1 cytokine). Moreover, there were significant increases in Th2 frequency, mRNA
expression of GATA binding protein 3 (Th2 marker), and IL-10 secretion in the cyclosporine
group [275]. In addition, in a nonrandomized trial, cyclosporine achieved a 77% live birth
rate in RPL patients who did not respond to other therapies (aspirin, prednisone, heparin,
and immunotherapy with their husband’s mononuclear cells). However, a significant group
of patients had hypertensive disorders (without symptoms of preeclampsia) and preterm
delivery [276]. On the contrary, for patients with RIF not selected by immunological profile,
there was no difference in the adjusted odds ratios of implantation, clinical pregnancy,
chemical pregnancy, take-home baby, and multiple births rates, preterm birth, abnormal
birth weight, or sex ratio between the cyclosporine-treated group (150 mg/day for 2 weeks)
and the control group [277].

It has been found that using tacrolimus in low doses improved pregnancy outcomes
for women with immune disorders and RPL [278,279]. Tacrolimus was more effective than a
placebo in reducing pregnancy complications [278–280]. Additionally, tacrolimus has been
found to improve reproductive outcomes in women with repeated implantation failure and
elevated peripheral blood TH1/TH2 cell ratios [281]. In another study, treating RPL women
with high TH1/TH2 cell ratios with vitamin D and tacrolimus resulted in significantly
higher clinical pregnancy and live birth rates [282]. Furthermore, the combination of
tacrolimus and low-molecular-weight heparin improved pregnancy outcomes for patients
with elevated peripheral NK cells [281]. It has also been noted that using cyclosporine and
tacrolimus in low doses and for a short time appears safe. It does not lead to serious side
effects nor increase the risks of obstetric and neonatal complications [281–284].

Sirolimus (rapamycin) is an mTOR (mammalian target of rapamycin) inhibitor and
autophagy inducer. mTOR is a serine/threonine kinase that plays a regulatory role in
cell metabolism, proliferation, and differentiation, while autophagy is a process involved
in the decomposition and recycling of cells [285]. It degrades proteins, organelles, and
extracellular invasive substances during cell stress and lack of nutrition. Autophagy is
involved in endometrial decidualization and trophoblast invasion, and mTOR can inhibit
the autophagy process [285]. Sirolimus may reduce the risk of miscarriage by enhancing
endometrial and macrophage autophagy. However, this medication could be deleterious
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to pregnancy [285,286]. Also, sirolimus may reduce the occurrence of RPL and RIF by
reversing abnormality of the mTOR/autophagy axis and regulating immunity [285,286].

In a double-blind, phase II randomized clinical trial, sirolimus treatment (2 mg/day
for 17 days) increased Treg cell number and function in the treated group of patients
with RIF and altered the Th17/Treg ratio. Moreover, there was a higher clinical preg-
nancy rate (55.81%) in sirolimus-treated patients compared to controls (24.24%) and an
increased live birth rate (48.83%) in RIF women who received sirolimus compared to con-
trols (21.21%) [285]. Since this study refers to a clinical trial published in 2019, it is not easy
to envision that the drug is safe to use in complex cases of RIF and RPL.

9.4. Intravenous Immunoglobulins (IVIGs)

IVIGs have multiple mechanisms of action. They reduce the activity of NK cells, in-
crease the activity of Treg cells, block anti-HLA antibodies, prevent complement activation,
downregulate stimulatory Fc receptors (FcγRI and FcγRIII), and upregulate inhibitory re-
ceptors (FcγRIIB) on the surface of different immune cells [286–289]. IVIGs can significantly
increase the live birth rate in RPL. Higher doses of IVIG in the presence of autoimmunity
tended to increase the success rate of pregnancy. However, more high-quality randomized
controlled trials, suitable for different populations, races, dosages, and timings of IVIGs
in the treatment of recurrent abortion, are needed to confirm their effectiveness [290–294].
Administration of IVIGs at a dose of 400 mg/kg per treatment spaced every 3 to 4 weeks
is likely to have clinical efficacy in women with RPL and cellular immune abnormal-
ity [290–294]. In a retrospective study, IVIGs at a dose of 600–800 mg/kg before conception
and monthly during pregnancy until 16–20 weeks of gestation were associated with a
higher live birth rate, especially in those with five or more abortions and primary RPL [295].
A retrospective study involving RPL patients found that administering IVIG at a dose of
200 mg/kg every 2 to 3 weeks during the first trimester, followed by monthly doses until
the end of the second trimester, in conjunction with low-dose aspirin treatment, resulted
in a live birth rate of 73.5% [296]. Additionally, this study found no significant correlation
between NK cell counts and the live birth rate [296]. In RPL patients, substantial reductions
in Th1 lymphocyte frequency, transcription factor expression, and cytokine levels were
observed in the IVIG-treated group with an increment of NK cells. The Th1/Th2 ratio
decreased significantly after treatment, and 87.5% of women in the IVIG-treated group had
live births compared to 41.6% of the untreated group [296].

IVIGs might be more effective in a subgroup of women with an aberrant immuno-
logical profile. The effect of IVIGs was particularly marked in a subset of studies that
included patients based on the presence of elevated NK-cell percentage (>12%) and the
time of intervention (before or during the cycle of conception). Treatment with IVIGs may
improve live birth rates in women with RPL and underlying immune conditions. However,
these results should be interpreted cautiously as studies are limited by a low number of
participants and non-randomized designs [296].

In patients with RIF, the use of IVIGs was associated with a higher implantation
rate compared to a placebo. Clinical pregnancy and live birth rates were significantly
increased in patients randomized to IVIGs. Moreover, the miscarriage rate was significantly
lower in patients randomized to IVIGs [297–300]. The administration of IVIGs has been
indicated to reduce the Th1/Th2 ratio and effectively boost the reproductive outcome of
RIF patients with high Th1/Th2 ratios or low Treg/Th17 ratios [299–301]. Furthermore,
IVIGs downregulated the Th17 cell population and upregulated the Treg cell population
in women with RPL [300]. In addition, IVIGs decreased NK cell levels and cytotoxicity
in patients with RPL or RIF [301,302]. In one study, the live birth rate was significantly
higher when IVIGs were administered before conception but not after implantation [303].
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Therefore, pre-conception treatment with IVIGs should be considered in women with RIF
of immune etiologies [303]. A meta-analysis found that IVIG treatment was associated with
a relative risk (RR) for a live birth rate of 1.26 in secondary RPL versus an RR of 0.88 in
primary RPL [303].

In subfertile women with high preconception Th1/Th2 ratios and/or an increase in
NK cells (CD56+/CD16+), the IVF success rate significantly improved after IVIG therapy
compared to no treatment [304,305]. In patients with typical Th1/Th2 ratios and normal
CD56+ cell levels, IVF success rates were no further improved with IVIG therapy [304,305].
Therefore, IVIGs may be helpful for patients with previous IVF failure and elevated pre-
conception Th1/Th2 ratios and/or NK cells [304,305]. In a meta-analysis of patients with
RPL or RIF and elevated NK cells, the results pooled from IVIG studies, which included
557 women (312 interventions and 245 controls), showed a risk ratio favoring the group
that received intervention; however, there was significant heterogeneity and a moderate to
severe risk of bias in the included studies [306]. Nevertheless, a Cochrane review reported
no significant effect of IVIGs on live birth rates in patients with RPL [307]; several authors
doubt the report [293–306].

In a recent double-blind, randomized, placebo-controlled trial in patients with four or
more RPL and unknown risk factors, the IVIG group had a higher live birth rate (58.0%)
than the placebo group (34.7%). In this trial, high doses of IVIGs (400 mg/kg/day for
5 days) increased Treg cells and decreased natural killer cell activity [308]. IVIGs are an
effective and safe treatment for pregnant patients affected with SLE and RPL [302]. IVIGs
have been used in patients with antiphospholipid syndrome and a history of stillbirth, plus
low doses of aspirin, low-molecular-weight heparin, hydroxychloroquine, and prednisone,
with good results [309,310]. Couples with recurrent IVF failure and HLA similarity (at least
3 HLA loci) may benefit from IVIG treatment [310].

Despite the number of reports favoring IVIG treatment in RIF and RPL, some patients
still do not respond to treatment, and it is challenging to determine the causes of such an
effect. On the other hand, the decrease in blood products may further affect the possibility
of treatment in these complicated patients.

9.5. Granulocyte Colony-Stimulating Factor (G-CSF)

G-CSF can increase IL-10 synthesis by Treg cells and promote transplantation tolerance,
thereby improving endometrial remodeling and receptivity [311,312]. In a randomized
controlled trial, 82.8% of women with RPL treated with subcutaneous G-CSF delivered
a healthy baby, compared to 48.5% for the placebo group (p = 0.006) [313]. However, in
another randomized controlled trial, there was no difference in the live birth rate between
women with RPL and G-CSF treatment and women on a placebo [314].

In a meta-analysis, subcutaneous G-CSF administration was beneficial for clinical preg-
nancy rates in women with RIF [315]. Furthermore, in the RIF population, administration
of G-CSF was associated with a significantly higher clinical pregnancy rate than no inter-
vention [316]. On the contrary, a single dose of subcutaneous G-CSF 30 min before embryo
transfer in patients with RIF induced no significant differences compared to controls in the
abortion rate, clinical pregnancy rate, or live birth rate [317]. In another meta-analysis, sub-
cutaneous G-CSF was more effective than the intrauterine administration of G-CSF [318].
The use of intrauterine G-CSF was associated with significantly higher biochemical and
clinical pregnancy rates among women with a thin endometrium or repeated IVF failures
in comparison with no treatment or a placebo [319]. More clinical trials are required to
ascertain the role of G-CSF in RIF and RPL.
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9.6. Tumor Necrosis Factor (TNF)-α Inhibitors

TNF inhibitors work by blocking TNF-α from binding to its receptors (TNFRI and
TNFRII), thus suppressing the immune response [15]. These inhibitors also reduce the
activity of transcription factors, proteases, and protein kinases (such as NF-κB, caspases,
and MAPK) and decrease the release of pro-inflammatory cytokines, chemokines, and
adhesion molecules. Additionally, they suppress the development of CD4+ T cells into
Th1 and Th17 cells [15]. TNF-α inhibitors have been used to treat RPL to reduce the rate of
immune rejection. Females with RPL who were treated with TNF inhibitors experienced
better pregnancy outcomes. However, there are still insufficient data to fully support the
use of TNF inhibitors in treating RPL [15].

A randomized controlled trial enrolling RPL patients (>3 abortions) with innate im-
mune disorders reported that etanercept (a TNF inhibitor), 25 mg per week starting from
the first day after menstruation, significantly reduced TNF-α and NK cell activity. More-
over, female patients treated with etanercept had a higher live birth rate than those treated
with placebo [320]. In a prospective study of a single arm of patients with RIF, etanercept
was associated with successful implantation in 75.9% of the cohort [314]. In another study,
62% of the cohort achieved a live birth or ongoing pregnancy; however, 56.7% of the live
births were preterm (<37 weeks) and 60.5% were underweight (<2500 g) [321].

Adalimumab (another TNF-α inhibitor) and IVIGs significantly improved IVF out-
comes in young infertile women with Th1/Th2 cytokine elevation [320,321]. Conversely,
there was no significant difference between IVIG treatment alone [322,323]. Anti-TNF-α
(adalimumab or certolizumab) has been used in refractory antiphospholipid syndrome
with good obstetric results in 70% of patients [324]. Moreover, TNF-α blockers can be
safely used during implantation and pregnancy [324]. Anti-TNFα is probably suitable
only in RPL patients with autoimmune diseases who respond well to the therapy under
normal conditions.

9.7. Allogenic Peripheral Blood Mononuclear Cell (PBMC) Immunotherapy

PBMC therapy or lymphocyte immunotherapy (LIT) consists of collecting peripheral
blood mononuclear cells from the husband or a third party and injecting them intradermi-
cally (in the forearm or thigh) into the prospective mother to prepare the immune system to
tolerate the embryo’s antigens [319,320]. Various mechanisms have been suggested for the
effectiveness of LIT, such as enhancing the expression of anti-paternal cytotoxic antibodies
(APCAs), progesterone-induced blocking factor (PIBF), anti-idiotypic antibodies (Ab2),
and mixed lymphocyte reaction blocking antibodies (MLR-Bf), as well as a reduction in
the Th1/Th2 ratio and a deviation in the pattern of cytokine production [325]. Allogeneic
PBMC therapy could enhance the percentage of CD4+ CD25+ Treg cells [326] and shift the
balance of Th1/Th2 toward Th2 immunity in peripheral blood, which favors pregnancy.
In addition, PBMC therapy significantly reduces the frequencies of Th17 and NK cells
while enhancing the frequency of Treg cells. PBMC therapy can substantially modulate
the maternal immune system by improving the Treg/Th17 paradigm and regulating the
expression of Treg and Th17 cell-associated cytokines, transcription factors, and miRNAs.
This treatment can also increase the live birth rate in RPL patients [327].

In a prospective study, LIT improved the pregnancy and live birth rates in RPL pa-
tients [328]. In another retrospective analysis, the live birth rate was significantly higher
in the LIT group with RPL compared to no therapy [329]. A retrospective analysis of
a multicenter, observational study that enrolled 1096 couples with a history of two or
more spontaneous miscarriages showed higher gestation success in the LIT group (60.1%
vs. 33.1%; p < 0.001) [301]. In another study with RPL patients, the abortion rate was
significantly lower in the LIT group than in the control group, which only received proges-
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terone [330]. An investigation showed the effectiveness of LIT in primary but not secondary
RPL patients [331]. On the other hand, paternal lymphocytes were more effective than
third-party lymphocytes in RPL patients [332].

The REMIS study, a double-blind, multicenter, randomized clinical trial, showed
that immunization with paternal PBMC did not improve pregnancy outcomes in women
with RPL. Still, this study used only one immunization, and most cells were injected
intravenously (the less immunogenic route) [333]. Two meta-analyses did not find signifi-
cant differences in patients who received paternal cell immunization [334,335]. However,
another meta-analysis showed a significantly higher success rate in the allogeneic PBMC im-
munotherapy group with RPL. Administration of the therapy before and during pregnancy
dramatically improved the live birth rate in women with RPL and was superior to PBMC
immunotherapy given only before pregnancy [336]. In a different meta-analysis, paternal
cell immunization induced a significant difference in outcome compared to autologous
vaccination, although the studies were small and at high risk of bias [337].

There is insufficient evidence to recommend LIT in patients with RIF. Possible compli-
cations, such as infections, autoimmune disorders, and irregular antibody formation, with
LIT must be considered [19,338,339].

9.8. Intrauterine Peripheral Blood Mononuclear Cells

In patients with RIF, the implantation rate was significantly higher when they received
intrauterine administration of autologous PBMCs (a mix of T and B lymphocytes and
monocytes) activated by human chorionic gonadotropin (hCG) in vitro (23.66% vs. 11.43%
in the control group) [340]. Similar results were observed in a study by Li et al. [341].
Implantation, clinical pregnancy, and live birth rates were significantly higher in women
with four or more implantation failures compared to the control group (22.00% vs. 4.88%,
39.58% vs. 14.29%, and 33.33% vs. 9.58%, respectively) [340].

Various meta-analyses showed that intrauterine autologous PBMC infusion benefits
clinical pregnancy and life birth rates [14,315,342–344]. However, other meta-analyses
did not demonstrate an association between administering PBMCs into the uterine cavity
before fresh or frozen-thawed embryo transfer and live birth rates in women with RIF [343].

In a retrospective study, women with RPL and low endometrial FoxP3+ Tregs received
intrauterine Tregs infusion. Patients in the Tregs group had a higher live birth rate and
lower miscarriage rate than women who did not have intrauterine Tregs infusion [345].

9.9. Intrauterine Autologous Platelet-Rich Plasma (PRP)

Intrauterine platelet-rich plasma (PRP) treatment may improve pregnancy outcomes
in patients with RIF. In a retrospective study by Ban Y et al. [346], it was found that the β-
hCG-positive rate, clinical pregnancy rate, and live birth rate were higher in the PRP group
compared to the control group. A meta-analysis that included seven randomized control
trials (with 861 patients experiencing thin endometrium, implantation issues, or pregnancy
failure) also showed that women who received PRP infusion had significantly higher rates
of clinical pregnancy, chemical pregnancy, live birth, and implantation compared to the
control group [346]. However, there was no significant difference in miscarriage rate [346].
Two other meta-analyses also found that PRP could significantly increase the live birth rate
in patients with RIF compared to blank and placebo groups [347,348]. In a recent clinical
trial, intrauterine PRP was superior to intrauterine G-CSF in patients with RIF [349].

9.10. Lipid Emulsion (Intralipid) Intravenous Therapy

Evidence supports the administration of intralipid (parenteral fat emulsion containing
soybean oil, glycerin, and egg phospholipids) in certain patients with RPL where standard
treatments have failed [350]. Intralipid therapy is effective in suppressing in vivo abnormal
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NK cell function. It usually consists of a solution combining 4 mL of intralipid at a 20%
dilution with 250 mL of saline solution. The effects of this therapy on the function and
number of NK cells take up to 6 weeks [351]. In a single-blinded randomized controlled trial,
the use of intralipid therapy in patients with previously failed IVF compared to controls
was associated with significant increases in the biochemical pregnancy rate (40.38% vs. 16%)
and take-home baby rate (28.8% vs. 10%) [352]. Moreover, a double-blind, randomized
controlled trial showed that intralipid administration in women with unexplained RPL and
positive NK cell activity undergoing IVF/ICSI cycles increased both the ongoing pregnancy
rate and the live birth rate [352]. However, in another study, intralipid administration was
associated with non-significant increases in the chemical pregnancy rate and the clinical
pregnancy rate and a non-significant reduction in the spontaneous abortion rate [353].

A meta-analysis of five randomized controlled trials (RCTs) including 840 patients
(3 RCTs: women with repeated implantation failure, 1 RCT: women with recurrent spon-
taneous abortion, 1 RCT: women who had experienced implantation failure more than
once) showed that intralipid administration significantly improved the clinical pregnancy
rate, ongoing pregnancy rate, and live birth rate in comparison to controls [354]. How-
ever, intralipid therapy had no beneficial effect on the miscarriage rate [354]. In another
meta-analysis of twelve studies, intralipid administration in patients with RPL or RIF
improved the implantation ratio, pregnancy rate, and live birth rate, with a reduction in
miscarriage [354]. The meta-analysis of Rimmer et al. [355], which evaluated 843 women
with RIF, included five randomized trials with a moderate risk of bias. The intralipid group
had a higher chance of clinical pregnancy and live birth compared to no intervention [356].
In a more recent meta-analysis that included randomized control trials, intralipid increased
the clinical pregnancy, ongoing pregnancy, and live birth rates in women with RPL or
RIF compared to the control group. However, there was no difference in the miscarriage
rate [356]. Intralipid treatment was effective in patients with RIF and RPL with elevated
Th1 cells in their endometrial biopsy [357]. In a retrospective study with historical control,
intralipid therapy did not improve the live birth rate and was not cost-effective in RPL or
RIF patients with elevated NK cells [358]. Intralipid treatment may be only effective in a
well-defined subgroup of patients [359].

9.11. Omega 3 Fatty Acid Supplementation

Supplementation with omega-3 fatty acids was successfully used in RPL patients with
antiphospholipid syndrome [360]. As described by Mu and coworkers [361] in a recent
review, the rationale behind the use of omega-3 fatty acids was to decrease the formation
of radicals and decrease the proinflammatory lipid products with a concomitant increase
in resolvins, which in turn would modulate immune cells to a tolerogenic response. In
addition, the use of omega-3 fatty acids modulated the gut microbiota and the production
of metabolites, which decreased the general proinflammatory response observed in RPL
patients [26]. Canela and coworkers [362] analyzed the phospholipids of the lipid emulsion-
treated patients and concluded that significant changes were observed in patients with RIF
and RPL. These changes can be used as biomarkers. More clinical trials are required to
determine the importance of this treatment in RPL and RIF.

9.12. Low-Molecular-Weight Heparin (LMWH)

International professional guidelines recommend heparin treatment for antiphospho-
lipid syndrome [363,364]. Combining heparin plus aspirin during pregnancy may increase
the live birth rate in women with persistent antiphospholipid antibodies and RPL compared
to the aspirin treatment alone [365,366].
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Several studies have found that LMWH is associated with increased chances of live
birth in women with thrombophilia and pregnancy loss [367,368]. A randomized study
of women with RPL and negative antiphospholipid antibodies showed a significantly
higher take-home baby rate in the LMWH group compared to the control group [369]. A
meta-analysis of 8 randomized control trials also demonstrated that LMWH significantly
improved the live birth rate and reduced the miscarriage rate in patients with RPL com-
pared to the control group [370]. Similarly, another meta-analysis, including RPL patients,
showed that the number of live births was significantly higher in the group treated with
LMWH and aspirin than in the group treated with aspirin alone [371]. However, a meta-
analysis comparing LMWH with no LMWH during pregnancy in women with inherited
thrombophilia and heterogeneous pregnancy morbidity did not show a significant dif-
ference in live birth rates with the use of LMWH [372]. Likewise, a meta-analysis did
not demonstrate the beneficial effect of heparin, aspirin, or both on the live birth rate in
patients with a history of RPL [373], and another randomized control trial showed that
daily LMWH injections did not increase ongoing pregnancy or the live birth rate in women
with unexplained RPL [374]. In patients with RPL and factor V mutation (Leiden), low-dose
aspirin alone, LMWH plus aspirin, or LMWH alone had comparable live birth rates [375].

A meta-analysis that included three small randomized control trials showed no dif-
ferences in the live birth rate, miscarriage rate, gestational age, or birth weight between
patients with RPL who received heparin and patients without treatment [376]. In an-
other meta-analysis involving women with unexplained RPL (5 studies, 1452 participants),
LMWH reduced the risk of miscarriage in women suffering ≥ 3 miscarriages. Still, no sub-
stantial influence was found on the live birth rate, preterm birth, preeclampsia, or small for
gestational age [377]. A recent meta-analysis, including studies with RPL and using LMWH
with or without low-dose aspirin, did not demonstrate benefits in live birth rates [378].
This analysis contrasts with the previous report of the same group in a retrospective study;
the use of heparin reduced the rates of miscarriage in patients with unexplained RPL and
patients with antiphospholipid syndrome or thrombophilia [379].

The ALIFE2 trial, a prospective randomized study that included 326 patients with
inherited thrombophilia and RPL, did not find a difference in the live birth rate between
patients treated with LMWH and controls (72% vs 71%) [380]. Thus, it is necessary to
analyze the reasons for the discrepancies in all of these trials.

9.13. Low-Dose Acetylsalicylic Acid

Low-dose aspirin and heparin are indicated for treating antiphospholipid syn-
drome [381]. Aspirin alone induced a lower live birth rate than LMWH administered
with aspirin in patients with RPL and antiphospholipid syndrome [381]. In the OPTIMUM
treatment strategy, RPL or RIF patients with thrombophilia (altered lupus anticoagulant,
anticardiolipin antibody, anti-β2-GP1 antibody levels, protein C and S activities, and fac-
tor XII levels) received 81 mg/day of aspirin with no heparin [279,382–384]. In patients
with RPL, the live birth rate was 77.1% in the group treated with low-dose aspirin alone
compared to 78% for those who received LMWH [384].

In a randomized study in patients with RPL without thrombophilia, low-dose aspirin
(100 mg/day) resulted in the same live birth rate as enoxaparin (40 mg/day). In primary
RPL (women who have never given birth to a live infant), 94% of pregnancies treated
with enoxaparin resulted in live births, compared to 81% treated with aspirin [385]. Nami
and coworkers reported [386] that in patients with one or two previous pregnancy losses,
aspirin led to more human chorionic gonadotropin-detected pregnancies, fewer pregnancy
losses, and more live births compared to a placebo.
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On the other hand, Mumford et al. reported that in women with a history of one to
two prior losses, the administration of low-dose aspirin before conception did not show
a significant difference in the abortion rate compared to a placebo [387]. Aspirin did not
prevent recurrent miscarriage in women with at least three consecutive miscarriages in the
first trimester. In this trial, the live birth rates were high in the aspirin and placebo groups
(83.0% and 85.5%, respectively) [388].

Aspirin monotherapy cannot be considered for patients with RPL and RIF and a
possible subclinical autoimmune or thrombophilia component.

9.14. Vitamin D

An in vitro study demonstrated that vitamin D therapy regulates T helper cell popula-
tions by inhibiting cytotoxic Th1 cell proliferation, promoting Th2 cells, suppressing Th17,
and inducing Treg cells [389]. Also, vitamin D has immune regulatory effects on NK cell
cytotoxicity, cytokine secretion, and degranulation process [390].

Vitamin D deficiency and insufficiency are associated with miscarriage [391], and
64.6% of individuals with RPL also had vitamin D insufficiency or deficiency [392]. Vita-
min D supplementation is recommended in obstetric antiphospholipid syndrome [324].
Strangely, a meta-analysis concluded that whether preconception treatment of vitamin
D deficiency protects against pregnancy loss in women at risk of miscarriage remains
unknown [393]. In patients with RPL, the prevalence of aPL antibodies, ANAs, anti-ssDNA,
and thyroperoxidase antibodies was significantly higher in those with low vitamin D levels
than in those with normal levels [393].

Since vitamin D has been shown to regulate immune cell responses, it is unsurprising
that its deficiency is involved in RPL and RIF. More well-designed trials should focus on
the possible deficiency of vitamin D.

9.15. Progesterone

Progesterone is an immunosuppressive hormone that can regulate NK cell activity
and cytokine balance during trophoblast invasion and lead to expansion of the CD56bright
population. Progesterone-induced blocking factor (PIBF) by lymphocytes expressing
progesterone receptors and trophoblast cells shifts the balance to a Th2-type immune
response [394]. Progesterone effectively suppresses the mTOR pathway in generating
Th1 and Th17 cells and induces Treg cell differentiation [394–396]. A Cochrane meta-
analysis demonstrated the benefit of progesterone for reducing recurrent miscarriage risk
in women [397]. Another meta-analysis suggested that progesterone or similar molecules
made little to no difference to the live birth rate of women with threatened or recurrent mis-
carriages. However, in the same meta-analysis, vaginal micronized progesterone may have
increased live birth rates in women with a history of one or more previous miscarriages
and early pregnancy bleeding [398]. In a recent meta-analysis, progesterone in women
at increased risk of pregnancy loss probably increased live birth rates. In patients with
threatened miscarriage, this therapy was more effective if there was a history of previous
abortions [399]. Progesterone was more successful when administered during the luteal
phase in RPL patients [338].

Even though progesterone has been used in the clinic for many years, well-designed
clinical trials should define the best pharmacological combination to increase the fertility
rate and pregnancy success.

9.16. Intrauterine Human Chorionic Gonadotropin (hCG) Infusion

In a meta-analysis, clinical pregnancy rates but not live birth rates were significantly
better in the intrauterine hCG infusion groups than in the blank and placebo groups [400].
In another meta-analysis, in women who experienced two or more implantation failures,
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the clinical pregnancy and live birth rates were significantly improved in the hCG group
compared to the control group [401]. In a prospective double blind randomized clinical
trial, intrauterine GCSF administration simultaneously with hCG injection showed light,
but not significant improvement in pregnancy rate [402].

The use of hGC is still preliminary, and several alternative routes should probably be
used to validate its effects.

9.17. Anti-Obesity Drugs to Increase Fertility

The increase in overweight and obesity incidence in recent years may have significant
consequences on fertility rates. Obesity has been shown to have a negative impact on
endometrial receptivity, modifying the window of implantation [403,404]. It has been
postulated that the link between obesity and subclinical inflammation, as described in
metabolic syndrome, is responsible for the high rates of implantation failure and recurrent
pregnancy loss in obese women [405]. Therefore, since metabolic changes like insulin
resistance are associated with an array of immune and endocrine responses, the use of
treatments to decrease obesity and insulin resistance may increase the fertility rate and
decrease recurrent abortion incidence.

Metformin has been used to treat women with polycystic ovary syndrome (PCOS),
who have higher rates of RIF and RPL [406]. The drug has also been used to treat gestational
diabetes and seems to benefit other pregnancy complications in obese women [407,408]. It
is assumed that metformin, besides decreasing insulin resistance, modulates the immune
response, which may affect the adipose tissue response and adipokine secretion and
function.

Recently, glucagon-like peptide-1 receptor agonists (GLP-1a) have been used to treat
diabetes and obesity [409]. It has been proposed that decreasing adipose tissue increases
fertility [409,410]. However, well-designed clinical trials are needed to determine the
effectiveness of the treatment before programmed pregnancy or IVF procedures.

The ESHRE guidelines for the different therapies analyzed are as follows:

1. Glucocorticoids are not recommended for treating unexplained RPL or RPL exhibiting
specific immunological biomarkers. There is insufficient evidence to endorse the use
of progesterone for enhancing live birth rates in women with RPL and luteal phase
insufficiency. However, vaginal progesterone may have a positive impact on live birth
rates for women with three or more pregnancy losses combined with vaginal bleeding
in subsequent pregnancies.

2. The use of heparin or low-dose aspirin is not advised in RPL patients without antiphos-
pholipid syndrome, as evidence indicates that these interventions do not improve live
birth rates in women with unexplained RPL.

3. There is also insufficient evidence for the effectiveness of human hCG in improving
live birth rates among women with RPL and luteal phase insufficiency. Addition-
ally, there is inadequate support for the use of metformin supplementation during
pregnancy to prevent pregnancy loss in women with RPL and glucose metabolism
anomalies.

4. Counseling women with RPL about the general recommendation to consider prophy-
lactic vitamin D supplementation before conception may be beneficial. Low-dose folic
acid is routinely initiated preconceptionally to prevent neural tube defects; however, it
has not been demonstrated to avoid pregnancy loss in women with unexplained RPL.
Due to inconclusive evidence, current guidelines neither endorse nor recommend
using vitamin supplements as treatment. Patients should receive appropriate advice
regarding the potential harms of vitamin supplements, notably vitamins E and A.

5. No evidence supports the recommendation of G-CSF in unexplained RPL.
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6. Lymphocyte immunization therapy is not advised to treat unexplained RPL due to
its lack of significant efficacy and potential for serious adverse effects. However,
the administration of repeated and high doses of IVIGs early in pregnancy may
increase live birth rates in women who have experienced four or more instances of
unexplained RPL.

7. There is insufficient evidence to support intralipid therapy as a means of improving
live birth rates in women with unexplained RPL.

8. According to the European Society of Human Reproduction and Embryology (ESHE),
substantial studies on alternative therapies for couples experiencing RPL, including
homeopathy, bioresonance therapy, and NaPro technology, are lacking.

Table 2. Summary of the different treatments used in RIF and RPL.

Treatment Rationale Effect References

Corticosteroids
(Treatment Level I)

Decrease in peripheral NK cells and
increase tolerogenic activity.
Combined with aspirin in patients
with autoimmune antibodies.

Decreased cytotoxic function. [244,245,249]

No suppressive effect [246]

Increased implantation rate in
IVF.

[250,251]

Increased implantation rate and
pregnancy success.

[253,254]

No increase in live birth rates. [255]

Combined with aspirin and heparin
in antiphospholipid syndrome.

Increased implantation and
pregnancy success. [256–260]

Hydroxy-
Chloroquine
(Treatment Level I)

Anti-thrombotic and
immunomodulatory properties.

Decreased pregnancy loss. [261–265]

Effect dependent on dose. [265,266]

Combined with conventional
treatment in antiphospholipid
syndrome.

Enhanced Tregs, diminished
Th17. [267]

Does not prevent further
miscarriage. [268]

Calcineurin inhibitors
(Treatment Level II)

Cyclosporine and Tacrolimus.
Immunosuppressive agents with
risk of birth defects [264,265].

Increased implantation and
pregnancy rate. [272–275]

Hypertensive disorders with
treatment [276]

No increase in implantation
rate. [277]

Increased implantation success
and pregnancy outcome.

[278–280]

Low-dose tacrolimus in women
with immune disorders alone or
combined with heparin. Low
side effects.

Decreased Th1/Th2 ratio. [281,282]

Risk-benefit effect in
endometriosis [283,284]

Sirolimus (rapamycin) inhibits the
mTOR pathway that is altered in
some RIF and RPL
patients [279,280]

Phase II clinical in altered
Th17/Treg patients. Increased
implantation and pregnancy
success.

[285]
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Table 2. Cont.

Treatment Rationale Effect References

Intravenous
immunoglobulins
(Treatment Level I)

Inhibition of HLA antibodies
decreases Fc receptor expression
and modulates NK cells.

Increased pregnancy success.
Better efficiency at high doses.

[286–296]

Effective in women with
immunological problems [297–306,309,310]

Granulocyte
colony-stimulating
factor (G-CSF)
(Treatment Level II)

Tolerogenic response. Increase in
Tregs/IL-10 [305,306].

Increased pregnancy success. [313]

There is no difference compared
to placebo. [314]

Subcutaneous injections have a
better effect on women’s
ongoing procedures.

[315]

Subcutaneous G-CSF increased
implantation success in RIF
patients.

[316–319]

Anti-TNFα
(Treatment Level II)

Inhibition of TNFα decreases local
inflammatory milieu.

Benefit for RPL and RIF patients
with autoimmune spectrum.

[320,321]

Combined with IVIG, it
increased pregnancy success. [324]

Allogenic peripheral
blood mononuclear
cell (PBMC)
immunotherapy.
(Treatment level II)

Generation of tolerogenic response
to HLA antigens from the father
and fetus [319–321].

Increased successful
pregnancies in some trials.

[328–330,333,334,
336,337]

Benefit in primary RPL only. [331]

No beneficial effect. [334,335]

Therapy may have
complications. [19,338,339]

Autologous
Intrauterine (PBMC)
(Treatment Level II)

PBMC is activated by human
chorionic gonadotropin to generate
a local tolerogenic response.

Increased successful
pregnancies in RPL patients.

[340–344]

Increased Tregs in patients with
low endometrial Treg. [345]

Intrauterine
autologous
platelet-rich plasma
(PRP)
(Treatment Level II)

Decrease in local inflammatory
response.

No significant effects. [346]

Improved live pregnancies in
RIF patients.

[347,348]

PRP therapy was superior to
G-CSF infusion. [349]

Intralipid/Intravenous
lipid emulsions
(treatment Level II)

Suppression of NK cytotoxic
function [344,345] and probably T
CD8 cells.

Increased pregnancy rate in
previously failed IVF.

[350,352,355]

No effect on pregnancy rate. [353,354,356]

Effective in patients with high
Th1 in endometrial biopsy. [357]

No effect in patients with high
endometrial NK cells [359]

Omega-3 fatty acid
oral supplementation
(Treatment Level II)

Decreases peroxide
formation—generation of resolvins
to decrease the inflammatory
response.

Positive effect in
antiphospholipid syndrome
RPL patients with conventional
treatment.

[360–362]
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Table 2. Cont.

Treatment Rationale Effect References

Low molecular weight
heparin (LMWH).
(Treatment Level IV)

Decreases thrombotic risk in
patients with antiphospholipid
syndrome.
Used as a guideline for
antiphospholipid patients
[357,358].

Increased live birth rate in RPL
patients with persistent
antiphospholipid antibodies.

[365,366,369–371]

Increased live birth rates in
patients with thrombophilia
and RPL.

[367,368,379,380]

There are no significant
differences in patients with
inherited thrombophilia and
heterogeneous pregnancy
morbidity. No beneficial effects.

[372,376–378]

Low-dose
acetylsalicylic acid.
(Treatment Level IV)

A co-treatment in antiphospholipid
syndrome.

Combination treatment with
LMWH enhanced birth rates
compared to aspirin
monotherapy.

[381–386]

Low success rate with
monotherapy [387,388]

Vitamin D
(Treatment Level II)

Deficiency in vitamin D is related to
impaired immune response.
Decreases the Th17 cell population

Vitamin D deficiency is
observed in RPL patients.

[391]

Decreased vitamin D in
antiphospholipid syndrome [324,393]

Progesterone
(Treatment Level I)

Decreases the inflammatory
response—decreases macrophages,
NKs, and T cell activation
[388–390]. Suppresses mTOR
pathway.

Increased pregnancy rate
(vaginal). [397,399]

No effect. [398]

Intrauterine human
chorionic
gonadotropin (hCG)
(Treatment Level II)

Induces tolerogenic milieu

Increased fertility rate, but not
live birth rate.

[400,401]

Lower effect than GM-CSF [401]

Intrauterine GCSF
administration simultaneously
with hCG injection may increase
pregnancy outcome

[402]

Anti-obesity drugs
(Treatment Level V)

Obesity decreases fertility rates.
Subclinical inflammation may be
responsible for reduced
implantation rate and pregnancy
success [403–405].

Metformin increases pregnancy
success in polycystic ovary
syndrome patients. [406–408]

Table legend: The table summarizes the different therapies described in the literature. The treatment levels follow
the Nursing-Johns Hopkins Evidence-Based Practice Model [411]. Level I is based on experimental study, level II
is based on quasi-experimental study, level III is based on non-experimental study, level IV is based on opinion of
expert societies, and level V is based on experiential and non-research evidence.

10. Future Perspectives
There is a growing necessity to thoroughly comprehend the physiological and patho-

physiological processes associated with RIF and RPL, both primary and secondary. Recent
advancements in reproductive medicine, particularly concerning the modulation of the
adipose tissue response and adipokines, may play a pivotal role in identifying patients af-
fected by these conditions. Furthermore, new insights into endometriosis and endometritis



Int. J. Mol. Sci. 2025, 26, 1295 28 of 48

are likely significant factors in both RIF and RPL. Implementing innovative strategies to
reduce the inflammatory burden within the endometrium may enhance current therapeutic
options for these conditions. As highlighted in the review, the array of approaches has been
varied, leading to complex and often challenging interpretations of the results.

Also, specific guidelines are needed to analyze and treat patients without a clear
spectrum of autoimmune disorders. General progress has been made for patients with
known autoimmune conditions, and good immunological screening and individualized
use of immunomodulating therapy can probably be useful for RIF and RPL.

Microbiota analysis should be performed routinely in patients who attend fertility
clinics since the presence of dysbiosis has been associated with decreased implantation and
fetal survival. In addition, molecular mimicry of pathogens can be crucial in developing
the autoimmune spectrum.

11. Conclusions
Alterations in NK cells, Treg cells, Th2, and cytokines play major immunological roles

in RPL and RIF. Therapies that correct NK cell disorders, inhibit Th17 and Th1 patterns,
and promote Tregs and Th2 lymphocytes may improve live birth rates.

RPL and RIF are complex conditions with multifactorial etiologies. Patients are a
heterogeneous group with diverse immunological and non-immunological factors. Patients
should be better classified depending on their immunological and endocrinological factors
to design treatment approaches and achieve positive outcomes. In summary, individualized
therapy should be considered.

Since infectious diseases and microbiota dysbiosis are increasing, medical screenings
considering both factors are suggested.

Figure 1 summarizes the general point of the review.
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