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Abstract: The transcription factor c-Myc, a key regulator of cellular processes, has long been associated
with roles in cell proliferation and apoptosis. This review analyses the multiple functions of c-Myc by
examining the different c-Myc isoforms in detail. The impact of different c-Myc isoforms, in particular
p64 and p67, on fundamental biological processes remains controversial. It is necessary to investigate
the different isoforms in the context of proto-oncogenesis. The current knowledge base suggests
that neoplastic lesions may possess the means for self-destruction via increased c-Myc activity.
This review presents the most relevant information on the c-Myc locus and focuses on a number
of isoforms, including p64 and p67. This compilation provides a basis for the development of
therapeutic approaches that target the potent growth arresting and pro-apoptotic functions of c-Myc.
This information can then be used to develop targeted interventions against specific isoforms with the
aim of shifting the oncogenic effects of c-Myc from pro-proliferative to pro-apoptotic. The research
summarised in this review can deepen our understanding of how c-Myc activity contributes to
different cellular responses, which will be crucial in developing effective therapeutic strategies;
for example, isoform-specific approaches may allow for precise modulation of c-Myc function.
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1. Introduction

The c-Myc transcription factor holds a central role in molecular biology and cancer
research due to the orchestration of various cellular processes through intricate control
of gene expression [1]. Structurally, c-Myc is a nuclear protein that forms heterodimers
with the Max (MYC Associated Factor X) protein. This complex binds to specific DNA
sequences, known as E-boxes, in gene promoters [2]. In terms of function, c-Myc either
activates or represses the transcription of genes that are critical to cell growth, proliferation,
and apoptosis. As such, it has a significant influence on the fate of cells. When regulating
cell growth, c-Myc upregulates the transcription of genes encoding protein products in-
volved in the cell cycle (such as E2Fs transcription factors, cyclins, and cyclin-dependent
kinases) and suppresses the transcription of genes linked with the inhibition of mitogenic
processes (for instance cyclin-dependent kinase inhibitors p21, p27) [3–7]. Hence, it is
clear that dysregulated c-Myc activity can lead to unbridled cell proliferation [8]. This
pro-proliferative effect is central to the involvement of c-Myc in tumourigenesis.

The dysregulation of c-Myc is a common hallmark of cancer [9]. Many cancer cells
exhibit elevated levels of c-Myc, contributing to uncontrolled growth and the propensity
to form tumours. Alterations in the c-Myc gene, such as mutations or amplifications,
are frequently observed in various cancers, including breast, lung, and colorectal [10–12].
The aberrant expression of c-Myc can be triggered by many factors, including mitogenic sig-
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nals, growth factors, and cellular stress responses; this highlights how a complex interplay
of regulatory mechanisms is involved in the control of c-Myc [2].

In addition to stimulating cell growth, c-Myc is also involved in apoptosis, or the
process of programmed cell death [13,14]. This dual role adds a further level of complexity
to how c-Myc contributes to tumourigenesis. Under certain conditions, c-Myc can promote
cell survival by upregulating anti-apoptotic genes, which can block pro-apoptotic signals
in cancer cells [15]. However, c-Myc can also induce apoptosis when required to safeguard
against the uncontrolled proliferation of damaged cells. These paradoxical roles underscore
how critical c-Myc is to maintaining a healthy balance within each cell.

In addition to involvement in cancer, c-Myc also plays a pivotal role in stem cell
regulation [16]. More specifically, c-Myc is instrumental in maintaining the pluripotency
of embryonic stem cells, which ensures that these cells can differentiate into various cell
types; this includes erythroid precursors, which demonstrate a decreased potential for
differentiation in certain inherited diseases, such as Diamond-Blackfan anaemia [17,18].
Additionally, c-Myc is crucial in the reprogramming of somatic cells into induced pluripo-
tent stem cells (iPSCs), a role which is highly relevant for regenerative medicine and tissue
engineering [19].

Establishing that c-Myc plays a pivotal role in tumourigenesis has led researchers
to focus on developing therapies that target this transcription factor [20]. The prevailing
avenue of research is exploring how to selectively inhibit the c-Myc activity in cancer
cells to disrupt uncontrolled proliferation, which holds immense promise for how cancer
is treated.

c-Myc regulates a wide array of cellular processes, ranging from cell growth to pro-
grammed cell death [21]. Influences on both uncontrolled cell growth and apoptosis
underscore why c-Myc is highly relevant to cancer research. The ongoing quest to unravel
the complex pathways and conditions that affect c-Myc function may uncover the basis for
how to develop targeted therapies for more effective cancer treatment.

The regulation and functioning of c-Myc significantly impacts the phenotype of a cell.
However, despite intensive study, the mechanisms through which proteins encoded by the
c-Myc locus are involved in diverse cellular processes remain poorly understood [22–24].
The very diverse functions of this transcription factor may be due to the complex and
understudied polycistronic locus. A closer understanding of the structure and function of
the individual c-Myc isoforms may be a key in the development of safe targeted therapies
against different c-Myc dependent tumour types.

The c-Myc proteins share many features with other transcriptional regulators.
These proteins are localised to the nucleus, can be phosphorylated, and have relatively
short half-lives, all characteristics which suggest that these proteins are regulated at various
levels [25,26]. Specific molecular functions have been assigned to the C- and N-terminal
regions of c-Myc-encoded proteins. For instance, the C-terminal domain of c-Myc proteins
shares structural similarities with members of the basic helix-loop-helix leucine zipper
(bHLH-LZ) superfamily of transcription factors [23] (Figure 1). The dimerisation of c-
Myc with Max, a member of the bHLH-LZ family [27], through the HLH-LZ region of
both proteins, facilitates sequence-specific binding to the CACGTG motif or E-box Myc
site (EMS) in DNA [28,29]. The c-Myc proteins can stimulate transcription by binding
to EMS sequences, whereas an excess of Max antagonises this transcriptional activity in
cells [30–32]. Activation of transcription by the c-Myc proteins also requires intact N- and
C- domains. The N-terminal region of the c-Myc proteins functions as a transactivation
domain, and deletions of highly conserved regions within the N-terminal domain, called
Myc boxes, reduce its transactivation function [32,33] (Figure 1). In addition, transactivation
can be modulated by proteins that interact with the N-terminal domain of c-Myc proteins,
including the TATA-binding protein (TBP) and the pRb-like protein p107 [34,35].
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Figure 1. Schematic representation of the protein structures encoded by the c-Myc locus. The N- and 

C- labels represent the N-terminal and C-terminal regions of the proteins, respectively. The full-

length protein structures are indicated by light blue rectangles. Conserved regions of the Myc boxes 

are labelled MB0 to MBIV and visualised by light green rectangles. The transcriptional activation 

domain (TAD) is located between MBI and MBII of p64 and p67. The dimerisation domains of p64, 

p67, and c-Myc S are shown in dark blue and are divided into the basic region (BR) and the helix-

loop-helix leucine zipper domain (HLH-LZ). In the case of mrtl, the hydrophobic region is shown 

in light yellow and the charged region is represented by a light red rectangle. The structure of My-

cHex1 has not yet been characterised in detail. Created with BioRender.com. 
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Figure 1. Schematic representation of the protein structures encoded by the c-Myc locus. The N- and
C- labels represent the N-terminal and C-terminal regions of the proteins, respectively. The full-length
protein structures are indicated by light blue rectangles. Conserved regions of the Myc boxes are
labelled MB0 to MBIV and visualised by light green rectangles. The transcriptional activation domain
(TAD) is located between MBI and MBII of p64 and p67. The dimerisation domains of p64, p67,
and c-Myc S are shown in dark blue and are divided into the basic region (BR) and the helix-loop-
helix leucine zipper domain (HLH-LZ). In the case of mrtl, the hydrophobic region is shown in light
yellow and the charged region is represented by a light red rectangle. The structure of MycHex1 has
not yet been characterised in detail. Created with BioRender.com.

c-Myc primarily functions in the nucleus as a transcription factor for three RNA
polymerases. The c-Myc/Max heterodimer, via the activation or repression of pol II
target genes, is critical in progression to the cell cycle from quiescence [2,36–40]. c-Myc
significantly impacts the overall rate of intracellular protein synthesis by stimulating the
activity of pol I (rRNA synthesis) and pol III, which are involved in the production of many
components of the translational apparatus (e.g., translation initiation factors, ribosomal
proteins) [41–45]. As such, c-Myc−/− cells have been found to show reduced RNA and
protein synthesis rates, along with prolonged cell division [46].

The ability to induce growth arrest and apoptosis is an intrinsic property of proteins en-
coded by the c-Myc locus [13,47,48]. However, naturally occurring truncations, mutations,
or rearrangements in the c-Myc sequence rarely, if ever, adversely affect the mitogenic or
pro-apoptotic activities of c-Myc proteins. This also applies—to some extent—to a viral ana-
logue of c-Myc, v-Myc, which is a viral oncogene found in certain retroviruses. The genetic
sequences of v-Myc and c-Myc share certain similarities, while the gene products demon-
strate significant differences in functions. For instance, v-Myc is often more potent in
promoting cancer than c-Myc due to differences in regulation and expression [38–40]. How-
ever, many human tumours exhibit genetic or epigenetic changes in c-Myc that disrupt
the pathway underlying cell death to inhibit the pro-apoptotic activity of c-Myc [49–52].
However, it should be noted that the mechanism through which cell death is activated
often remains intact, even in advanced malignancies, but is impeded so that proliferation is
ultimately favoured [53–56].

The next section will provide a closer look at the locus structure of the central tran-
scription regulator c-Myc.

2. Structure of the c-Myc Locus

In humans, the production of more than one protein from a single genetic locus or mRNA
is an event that occurs in some particular genes. One such case is the p16INK4a/p14ARF locus,
which encodes two distinct proteins with overlapping coding sequences but different read-
ing frames [57,58]. Furthermore, it is well known that the human c-Myc locus, particularly
the polycistronic c-Myc P0 transcript, can produce several distinct protein products.

The human c-Myc locus, which is located on chromosome 8q24, has a complex struc-
ture (Figure 2). For instance, transcription can be initiated by binding to one of four
alternative promoters (P0, P1, P2, and P3), the last of which is located between exons 1 and
2 of the gene [8,59–61]. The locus contains the coding sequences for two longer isoforms of
the c-Myc protein, p67 (also termed c-Myc1) and p64 (referred to as c-Myc2), one truncated
isoform of c-Myc S (p55), and the protein products of two ORFs, designated as mrtl and
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MycHex1. The sequences of mrtl and MycHex1 do not overlap with the c-Myc sequences,
except for a minor overlap of 19 bp between the C-terminal sequence of MycHex1 and the
N-terminal sequence of c-Myc p67, which are not in the same reading frame (Figure 2).
P1 and P2 are the two most commonly used promoters, contributing to approximately
90% of the c-Myc transcripts in cells [62]. Translation of c-Myc mRNA can be initiated
at one of two different initiation codons (CUG or AUG), leading to the synthesis of two
protein isoforms (p64 and p67) [63]. p64 Myc is the predominant gene product, and most
likely responsible for the oncogenic properties of the c-Myc locus [64]. In comparison to
p64, the N-terminus of p67 Myc contains 14 additional amino acids and appears to have
strong tumour suppressor properties. Thus, the p64:p67 ratio has a large influence on cell
response [65].
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Figure 2. Diagram showing the structure of the c-Myc locus. The transcript starting from the
P0 promoter encodes the mrtl and MycHex1 mRNAs, which are located upstream of the coding
sequences for p67 and p64 mRNAs. The positions of the four transcription start sites (P0, P1, P2, P3)
are indicated by bent arrows. Exons are indicated by dark blue rectangles and introns are indicated
by light blue rectangles. Transcription rates initiated from four promoters are indicated by dashed
dark purple arrows. Below the DNA coding sequence are all transcripts of the c-Myc locus indicated
in light purple rectangles. Created with BioRender.com.

3. Two Main c-Myc Isoforms: p64 and p67

The two major isoforms of c-Myc, p64 and p67, have been found in all vertebrate
species studied to date [63]. In mammalian and avian cells, these two proteins are produced
by the alternative initiation of translation at distinct in-frame codons, namely, the AUG
codon for p64 and the CUG codon for p67 [63]. The evolutionary conservation of this
c-Myc locus expression pattern over 400 million years suggests that multiple isoforms may
play an essential role in c-Myc function. Translation of the p67 protein begins at the CUG
codon, and thus results in an amino-terminal extension of 14 amino acids relative to the
p64 protein [63]. Several lines of evidence suggest that the p67 protein is involved in cell
growth and tumourigenesis. For instance, disruption of p67 synthesis has been observed
in many Burkitt’s lymphomas [25,63]. In addition, the two forms of the c-Myc protein
are differentially expressed during cell growth. When cell confluence increases, the p67
isoform predominates. This suggests that the p67 protein plays a role in growth inhibition,
whereas the p64 and v-Myc proteins have been shown to stimulate growth.
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Many of the c-Myc gene rearrangements observed across various cancer types have
been found to involve changes in exon 1. These often include complete deletion of exon
1 in the case of chromosomal translocations and retroviral translocations, along with
minor deletions, point mutations, and proviral insertions in intron 1 [66]. The prevailing
interpretation for this dynamic is that these changes only affect the regulation of c-Myc
expression as the region encoding the protein with the AUG initiation codon in exon
2 is conserved. The first exon of c-Myc contains regions and regulatory elements that
are likely important in controlling expression. These include sites for the addition of a
methylguanosine cap to c-Myc mRNA at the 5′ end of exon 1 and a region that controls
the elongation of nascent mRNA transcripts, as well as a possible enhancer element near
the 3′ end of exon 1 [60,67–71]. Thus, removal of the first exon—which occurs in a series
of rearrangements of the c-Myc locus—alters the c-Myc promoter structure and halts the
expression of isoform p67, which is implicated in growth inhibition. Therefore, removal of
the first exon of c-Myc likely leads to deregulation of the cell cycle and metabolism.

There also appear to be functional differences between the p64 and p67 proteins.
For instance, p67 is a potent and specific transactivator of the enhancer element EFII
via the C/EBP binding site (CCAAT-enhancer-binding protein, TTATGCAAT sequence).
The C/EBP family consists of six related transcription factors which share a basic leucine
zipper domain and are simultaneously classified as tumour suppressors, proto-oncogenes,
and regulators of differentiation [72]. This transactivation has been observed in numerous
cell types and species.

In contrast to the strong transactivation capacity of p67, the p64 c-Myc isoform either
fails to transactivate the EFII enhancer element or represses EFII-driven transcription
(Figure 3). In addition, there is evidence that v-Myc proteins also significantly repress
transcription through interactions with the EFII enhancer element [65]. Both p64 and
p67 proteins could transactivate via the canonical EMS sequence. Since both isoforms
have the same C-terminal domain, the opposing effects of these proteins on EFII-driven
transcription are most likely due to differences in N-terminal domains [27]. A possible
explanation is that the amino terminal extension of 14 amino acid residues in p67 causes an
overall conformational change in the N-terminal region, which contains the transactivation
domain. These structural variations between p64 and p67 may result in unique interactions
with transcriptional complexes based on specific DNA binding sites [65,73].

In addition to transcriptional activation, c-Myc has several distinct molecular func-
tions, including transcriptional repression and direct modulation of DNA synthesis [23,74].
The N-terminal region of c-Myc is essential for the transcriptional repression of the cyclin
D1 promoter [74]. The finding that p64 and p67 differentially transactivate the binding site
for C/EBP yet can activate transcription of the EMS sequence suggests both distinct and
overlapping functions for these two proteins. p67-regulated transcription of the C/EBP se-
quence indicates that the intracellular proportions of p64, p67, and C/EBP family members
may determine the overall transcription rates of genes containing this sequence. Research
conducted by Freytag and Geddes in 1992 highlighted that C/EBP and p64 proteins have
contrasting roles in regulating adipogenesis [75]. Furthermore, there is evidence that an
increase in p67 synthesis appears to be driven by methionine availability in the growth
medium [76]. Thus, modulation of p67 levels may represent an early cell response to
adapting to growth under nutrient deprivation. The different, and sometimes opposing,
manners in which the two c-Myc proteins regulate the transcription may also apply to
varying roles in the regulation of cellular metabolism.
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Figure 3. Schematic representation of the interaction and localisation of c-Myc isoforms. p64/Max,
p67/Max, Myc S/Max, and Max/Max transcriptional activities on E-box and C/EBP responsive
elements are depicted in the lower part of the figure, whereas localisation and function of mrtl and
MycHex1 are shown in the upper part of the figure. Created with BioRender.com.

Prior research has elucidated one of the cellular signalling mechanisms that regulates
the intracellular balance of p64 and p67 levels. For instance, PKR (or EIF2AK2, eukaryotic
translation initiation factor 2-alpha kinase 2) has been shown to enhance c-Myc transcrip-
tion via interactions with NF-κB (Nuclear Factor Kappa-light-chain-enhancer of Activated B
Cells) and STAT (Signal Transducer and Activator of Transcription). PKR activity also signif-
icantly influences c-Myc mRNA stability, translation, and subsequent protein stability [77].
Treating cells with a PKR inhibitor or performing siRNA-mediated knock-down of PKR
results in heightened intracellular levels of p67. In contrast, PKR overexpression increases
intracellular levels of p64 (Figure 3). This event is highly relevant to tumourigenesis, as the
balance between p64 and p67 significantly impacts various cellular responses, such as pro-
liferation, cell cycle arrest, and apoptosis. Interestingly, under normal growth conditions,
PKR overexpression enhances cell growth, whereas the siRNA-mediated knock-down of
PKR, or treatment with a PKR inhibitor, results in cell cycle arrest [77].

C/EBP overexpression also exerts a growth inhibitory effect [78]. However, since p64
and p67 proteins transactivate expression through EMS sequences, they may share some
biological functions. It is likely that the disruption of p67 protein synthesis by genetic muta-
tion or rearrangement, as is the case in Burkitt’s lymphoma, causes cells to lose the growth
inhibitory response under nutrient depletion, which could contribute to oncogenesis.

4. The Third Isoform c-Myc S

In addition to p64 and p67, human, mouse, and avian cells also express smaller c-Myc
proteins. These truncated proteins, termed c-Myc S, are produced by leaky scanning at
conserved AUG codons downstream of the initiation sites for p64 in exon 2 of c-Myc
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(Figure 2) [79]. c-Myc S lacks most of the N-terminal transactivation domain present in
p64 and p67 but retains the C-terminal dimerisation and DNA-binding domains (Figure 1).
Like p64 and p67, the c-Myc S proteins are localised to the nucleus, can be phosphorylated,
and are relatively unstable. Significant levels of c-Myc S, approaching those of p64 and
p67, have been transiently observed during the rapid growth phase of several different cell
types [79,80]. The c-Myc S proteins never activate the transcription of certain genes but are
able to inhibit p64 and p67, which suggests a dominant-negative inhibitory function [80]
(Figure 3). These smaller c-Myc proteins are obviously not expected to function as p64 and
p67, while the finding that tumours express high levels of c-Myc S during the rapid cell
growth phases suggests that these proteins do not impede the proliferative effects of p64
and p67. As such, although c-Myc S is characterised by the loss of most of the transcriptional
activation domain found in both p64 and p67, it is a promoter of cell proliferation [79].

5. MycHex1 and mrtl

Evidence of an internal ribosomal entry site (IRES) designed solely for the translation
of MycHex1 mRNA has sparked interest in deciphering the physiological roles of c-Myc
P0 mRNA and the protein MycHex1 (Figure 2) [62]. Both mrtl and MycHex1 are found
only in primates, in contrast to c-Myc, which is conserved across all vertebrates. mrtl
and MycHex1 are relatively basic proteins, with pI values of 8.65 and 11.87, respectively.
Full-length mrtl has 114 amino acids (12.5 kDa) and is rich in arginine. The N-terminal
region, which is highly hydrophobic, is thought to be the only transmembrane domain
(Figure 1) [40]. The hydrophobic region is interrupted by a series of charged amino acids
(RSER). Another, slightly smaller isoform of mrtl exists, designated as mrtx (98 amino
acids, 10.8 kDa), and lacks most of the transmembrane domain. Two myristoylation sites
in the central region of the protein could further facilitate the membrane association of
mrtl. The C-terminal sequence contains several examples of alternation between positively-
and negatively-charged residues, and shows considerable homology to several RNA-
binding proteins [40]. It is likely that this region serves as an interaction domain with other
proteins [81]. Moreover, there are four sites at which serine residues can be phosphorylated
(consensus substrates for protein kinase C, casein kinase II, protein kinase A, and protein
kinase G), with two located in the middle of charged residues within the C-terminal
domain [40].

Regulation of c-Myc expression at the translational level is also important to normal
cell functioning [76,82,83]. The transcription of mrtl in cis from c-Myc mRNA places
mrtl near regulatory sequences and controls the efficiency of c-Myc translation (Figure 2).
The primary determinant of c-Myc translational regulation is the IRES sequence, which is
located in the 5′ UTR between the coding sequences of mrtl and c-Myc (Figure 2) [84,85].
As such, it is possible that mrtl regulates c-Myc translation through modulation of IRES
activity. From a genetic perspective, mrtl and c-Myc are very closely linked, so gene
amplification or chromosomal translocations involving c-Myc will often affect the mrtl
coding sequence [40]. Given this relationship between mrtl and c-Myc, it is plausible that
mrtl may contribute to the role that the c-Myc locus plays in oncogenesis.

Within the cell, mrtl is mainly found in the nuclear envelope, endoplasmic reticu-
lum (ER), and tubular and cisternal structures of the nucleoplasmic reticulum (NR) [40]
(Figure 3). Because the nuclear envelope and rough ER are studded with ribosomes, it is
possible that mrtl is in close proximity to the translational apparatus. Thus, mrtl could be in-
volved in the regulation of translation. There is already empirical evidence for this, as mrtl
was found to be associated with the translation initiation factors elF4G (Eukaryotic Transla-
tion Initiation Factor 4 G) and elF2α (Eukaryotic Translation Initiation Factor 2α), as well
as the integral 40S ribosomal protein RACK1 (Receptor For Activated C Kinase 1) [40].

In contrast, MycHex1 is present in nuclear foci, and only colocalised with mrtl at
a single nuclear site, referred to as the central cisternal reservoir of the nucleoplasmic
reticulum [86] (Figure 3). Prior research has shown that MycHex1 and fibrillarin shares
their position at several discrete nuclear foci labelled with anti-BrdU antibody [86]. Fib-
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rillarin is a ribonucleoprotein and nucleolar marker (snRNP) involved in ribosomal RNA
processing [87]. Findings that BrdU is incorporated into DNA suggest that the nuclear loci
at which MycHex1 is present may represent sites of DNA replication. As a highly basic
protein, MycHex1 can associate with either DNA or RNA to facilitate replication or RNA
processing, respectively [86].

Co-immunoprecipitation assays have revealed that endogenous mrtl and MycHex1
interact with RACK1, c-Myc, fibrillarin, coilin, and even with each other [86]. This indicates
that both proteins may bind to a wide array of partner molecules within the nucleus and
cytoplasm. Given the structural characteristics of mrtl and MycHex1, it is plausible that
these proteins serve to anchor essential protein assemblies by targeting protein regions
that include amino acid residues with alternating charges. Notably, the abundance of
arginine and serine in both proteins is indicative of similarity to numerous RNA-binding
proteins [86].

The cell nucleus has a sophisticated structure and houses several unique parts, such
as nuclear bodies, nucleoli, Cajal bodies, nuclear speckles, paraspeckles, PML bodies
(promyelocytic leukaemia), and Polycomb bodies. Notably, these nuclear entities lack a
defining membrane, which enables the seamless interchanging of contents with the adjacent
nucleoplasm [88]. MycHex1 might play a pivotal role in the formation and fortification of
certain nuclear bodies. The ability of MycHex1 to undergo homo-oligomerisation, when
combined with the co-immunoprecipitation findings that this protein has several potential
binding partners, aligns well with this hypothesised role [89]. The nucleoplasmic reticulum
comprises a series of membranous tubules within the nucleus to form the central cisternal
reservoir [90–94]. This structure involves folds of the nuclear envelope and has a similar
composition as the cytoplasm. The numerous folds in this nuclear structure significantly
increase the surface area and enhance contact between the nucleus and cytoplasm. The
distribution of mrtl across the nuclear envelope and nucleoplasmic reticulum alludes to a
mechanism in which mrtl mediates the transport of certain molecules between the nucleus
and cytoplasm [40] (Figure 3).

It is widely recognised that proteins which will be fully or partially integrated into the
cell membrane will first be processed at the endoplasmic reticulum (ER) membrane via in-
teractions between a signal peptide and a signal recognition particle. Analogously, proteins
like c-Myc, which are localised to the nucleus, might undergo a similar co-translational
transfer so that the synthesised protein is transported across the nuclear membrane into
the nucleoplasm. c-Myc mRNA is predominantly found in the perinuclear area (Figure 3).
The distinct presence of mrtl at the nuclear membrane and nucleoplasmic reticulum, cou-
pled with structural similarities to ATP-binding cassette (ABC) transport proteins, hints at
a potential role in translocating nascent c-Myc into the nucleus [95]. In addition to specific
regulation of c-Myc translation, mrtl might also influence the translational efficiency of
other mRNAs. Indications of a broader cellular role for mrtl include extensive presence
across the endoplasmic and nucleoplasmic reticulum, consistent accumulation in cells, and
deep integration within cellular structures. As such, mrtl could facilitate interactions be-
tween mRNA, translational machinery, and the intracellular membrane network (Figure 3).
As mrtl is positioned at a junction of the cytoplasm and nucleus, it might play a crucial role
in synchronising the movement of mRNAs and nascent proteins between the cytoplasm
and nucleus [96].

6. Targeting c-Myc in Cancer

c-Myc is implicated in various cancers and other diseases, including but not limited
to lymphomas, breast cancer, lung cancer, colorectal cancer, and prostate cancer. The role
and significance of c-Myc may vary across different cancer types [9]. High levels of c-Myc
expression in certain cancers has been correlated with poor prognosis. It is often associated
with more aggressive tumour behaviour, increased likelihood of metastasis, and resistance
to treatment. Changes in c-Myc expression levels during the course of treatment may
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serve as an indicator of treatment response. Monitoring c-Myc levels can help assess the
effectiveness of therapies and guide treatment decisions [9].

The c-Myc transcription factor has emerged as a significant target for therapeutic inter-
vention, particularly in the context of cancer and other diseases as well [97,98]. Given its
crucial role in promoting tumorigenesis and its frequent dysregulation in various malignan-
cies, researchers have explored two primary strategies for inhibiting c-Myc: direct inhibition
of its activity and indirect approaches that modulate its expression or stability [99].

Direct inhibition involves the development of therapeutics designed to disrupt its
transcriptional activity, modulate its interactions with co-factors, or cause G quadruplex
stabilization in its promotor. This approach, although challenging due to the lack of
well-defined binding pockets on c-Myc, holds promise for precise targeting of the oncopro-
tein. Further strategies in this category include antisense oligonucleotides (ASOs), which
target and degrade c-Myc mRNA and miniproteins designed to block its DNA binding
domain [98].

On the other hand, indirect inhibition focuses on manipulating pathways upstream
or downstream of c-Myc. Strategies in this category also include modulation of c-Myc
degradation and protein stability mostly via post-translational modifications [20,100].

A list of compounds belonging to direct and indirect c-Myc inhibitors is summarized
in Table 1.

Table 1. A list of compounds and drug candidates directly and indirectly inhibiting c-Myc.

In
di

re
ct

c-
M

yc
in

hi
bi

ti
on

BET family inhibitors

JQ1, Birabresib (OTX015, MK-8628), Molibresib (GSK525762),
RO6870810 (RG6146, TEN-0), FT-1101 (CC-95775), ZEN-3694,
BMS-986158, AZD5153, BI894999, CPI-0610, GSK2820151,
INCB057643, INCB054329 and GS-5829, TEN-010, ABBV-075,
PROTACs ARV-771, and ARV-825

BCR inhibition Ibrutinib, ARQ531

eIF4A inhibition Silvestrol

In
di

re
ct

c-
M

yc
in

hi
bi

ti
on

PI3K inhibition Idelalisib, TGR-1202, Fimepinostat (CUDC-907), BR101801

CDK inhibition
Dinacyclib, TG02, KB-0742,THZ1 and THZ2, aminopyrimidines,
triazane derivatives, carbamoyl sulfoximide,
4-(4-fluoro-2-methoxyphenyl)-N-1,3,5-triazin-2-amine

PIM1 inhibition AZD1208, SGI-1776, TP-3654 (SGI-9481), MEN1703, PIM447

PIN1 inhibition KPT-6566, Retinoid ATRA, BJP-06-005-3, Sulfopin, PIM447,
SEL24 (MEN1703)

PP2A modulation DT-061, FTY720, OP449, Perphenazine, LB-100

SKP2 inhibition SZL-P1-41, FKA, Dioscin, SKPin C1

USP7 inhibition P22077, XL177A, GNE-6640, GNE6776, FT671

JAK2/STAT3 inhibition MTAP-26, and MTAP-27, WP1066, WP1130, and WP1129

NF-κB inhibition Guggulsterone

Src kinase inhibition Saracatinib

FBXW7 activation Oridonin, HAO472

Aurora-A inhibition Alisertib (MLN8054, MLN8237), CD532

Aurora-B inhibition AZD1152

PLK-1 inhibition BI6727

HUWE1 inhibition BI8622 a BI8626

HDAC inhibition Entinostat, Tucidinostat, CUDC-907
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Table 1. Cont.

D
ir

ec
tc

-M
yc

in
hi

bi
ti

on

G quadruplex stabilisation CX-3543, APTO-253, IZCZ-3, cationic porphyrins (TMPyP4),
quarfloxin, DM039, ruthenium complexes (Se2Py3, Se2SAP)

Antisense oligonucleotides AVI- 4126, MYC-ASO, INX-3280, INX-6295

Miniproteins and protein domains OmoMYCs (OMO-103, OMO-1, FPPa-OmoMYC), Bac- ELP-H1,
PNDD1, ME47, Mad, alfa-helix peptide H1

Myc/Max interaction disruption

ME47, EN4, 3jc48-3, pyrazolo [1,5-a]-pyrimidines (MYCro1, MYCro2
a Mycro3), KJ-Pyr-9 (Kröhnke pyridine), MYCMI-6, MYCMI-7,
MYCi975, MYCi361, KSI-3716, MYRA-A, MI1-PD, KI-MS2-008,
quinolone derivatives (KSI-1449, KSI-2302, and KSI-3716), substituted
pyrazole compounds (NUCC-0176242, and NUCC-0176248), IIA6B17,
10058-F4, 10074-G5, JY-3-094, JKY-2-169, SaJM589

Max/Max homodimers sabilization KI-MS2-008, NSC13728

Note: BET family (Bromodomain and Extra-terminal Domain), BCR (The Breakpoint Cluster Region Protein),
eIF4A (Eukaryotic Translation Initiation Factor 4A), PI3K (Phosphatidylinositol 3-Kinase), CDK (Cyclin-dependent
kinase), PIM1 (Pim-1 Proto-Oncogene, Serine/Threonine Kinase), PIN1 (Peptidylprolyl Cis/Trans Isomerase,
NIMA-Interacting 1), PP2A (Protein phosphatase 2A), SKP2 ((S-Phase Kinase Associated Protein 2), USP7 (Ubiq-
uitin Specific Peptidase 7), JAK2 (Janus kinase 2), STAT3 (Signal Transducer And Activator Of Transcription
3), NF-κB (Nuclear Factor Kappa B), Src (SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase), FBXW7 (F-Box
And WD Repeat Domain Containing 7), PLK-1 (Polo Like Kinase 1), HUWE1 (HECT, UBA And WWE Domain
Containing E3 Ubiquitin Protein Ligase 1), HDAC (Histone Deacetylase), Max (MYC Associated Factor X), Myc
(MYC Proto-Oncogene, BHLH Transcription Factor).

Regarding the direct influence of p64 and p67 isoforms ratio by small molecules,
an extensive high throughput screening of 135,000 compounds was performed by Vaklavas
and colleagues [101]. Among them, an inhibitor of IRES-mediated translation was identified.
The structure and activity of this hit was greatly improved leading to the development
of cpd_P. This cpd_P is causing complete loss of clonogenic survival, massive cell death,
terminal differentiation, and death of putative tumour stem cells [102].

To discover another IRES modulator inhibiting c-Myc translation, named J007, a library
of 145,000 compounds had to be tested. The effort certainly paid off as J007 inhibits
proliferation of multiple myeloma cell lines and tumour growth in vivo [103]. Furthermore,
it induces cell death in glioblastoma resistant to mechanistic targeting of rapamycin (mTOR)
inhibition when J007 and the PP242 (mTOR inhibitor) are simultaneously applied [104].
The effect of J007 on the expression of p64 and p67 isoforms remains to be elucidated.

7. Discussion and Summary

The primary objective of this literature review was to comprehensively present the
reasons why the c-Myc gene plays such a crucial role in determining cell fate. We have
explained how expression of this oncogene can produce five different proteins, each with
unique characteristics and functions. These proteins have distinct structures, are localised
to different cell compartments, and exert unique roles (Table 2). This genomic arrangement
highlights the multifaceted nature of c-Myc expression and functions.

Throughout this article, we have discussed the unique features of the c-Myc gene
within the human genome and focused on two well-established yet controversial roles:
stimulating cell cycle progression and promoting growth arrest and apoptosis. Meticulous
research into these roles can provide insight as to why the expression of five distinct c-Myc
protein isoforms is necessary for regulating normal c-Myc function during cell growth and
arrest. The complex regulatory landscape surrounding c-Myc-mediated cellular dynamics
is emphasised by the different mechanisms governing the synthesis of various c-Myc
isoforms, demonstrating varying abilities to activate and regulate transcription.
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Table 2. Summary and comparison of the most important findings on all isoforms of c-Myc.

p64 Myc
(c-Myc2)

p67 Myc
(c-Myc1) mrtl MycHex1 c-Myc S

Structure well known

contains additional
14 amino acids at its
N terminus
compared to p64
Myc

N-terminal region
single
transmembrane
domain, C-terminal
sequence interaction
domain with
homology to
RNA-binding
proteins

highly basic
protein, capable of
homo-
oligomerization

c-Myc S lacks the
N-terminal
transactivation
domain

Expression
predominant gene
product of the c-Myc
locus

lost in many
tumours unknown

IRES facilitates
translation of the
MycHex1

higher levels of
c-Myc S have been
transiently
observed during
the rapid growth
phase of several
cell types

p64 Myc
(c-Myc2)

p67 Myc
(c-Myc1) mrtl MycHex1 c-Myc S

Function

oncogenic properties,
p64 c-Myc isoform
transactivates via the
canonical EMS
sequence and fails to
transactivate the EFII
enhancer element
via the C/EBP
binding site

growth inhibitory
properties, p67 is a
potent and specific
transactivator of the
enhancer element
EFII via the C/EBP
binding site and also
transactivates via the
canonical EMS
sequence, mediates
growth inhibitory
response under
nutrient depletion or
contact inhibition

regulates c-Myc
translation and
localization to the
nucleus, contributes
to the role of the
c-Myc locus in
oncogenesis (IRES),
might be part of a
complex which
regulates the
translation,
localization, or
processing of mRNA

possibly involved
in replication,
RNA processing,
and formation of
nuclear bodies

c-Myc S protein
lacks
transactivation
capacity, but it is
able to inhibit p64
and p67, which
suggests a
dominant-
negative inhibitory
function

Onthology
conserved in chimpanzee, Rhesus monkey,
dog, cow, mouse, rat, chicken, zebrafish, and
frog

mrtl and MycHex1 are found only in
primates

human, mouse,
and avian cells

Subcellular
localisation

mainly nucleus and
cytoplasm

mainly nucleus and
cytoplasm

nuclear envelope,
ER, tubular and
cisternal structures
of the NR

colocalizes with
fibrillarin

mainly nucleus
and cytoplasm

Additional
information

stoichiometric balance between p64 and p67
is important for cellular metabolism
regulation and proliferation

colocalize in the central cisternal reservoir
of the nucleoplasmic reticulum

Previous research has shown that disruptions in the balance between two specific c-
Myc protein isoforms, p64 and p67, are often observed in cancer cell lines with deregulated
c-Myc activity. These imbalances in isoform proportions may directly contribute to the loss
of control over cell growth, which is a common feature of tumourigenesis. Understanding
the molecular intricacies that govern how c-Myc is involved in cell cycle regulation is
crucial due to frequent dysregulation in human cancers. The relationships between various
c-Myc protein isoforms, particularly the specific impacts on cell cycle control and arrest,
open new possibilities for therapeutic interventions. The definitive understanding of the
complex interplay between c-Myc, apoptosis, and cell cycle progression could significantly
address a wide range of malignancies.
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8. Conclusions

In conclusion, ongoing efforts to understand the regulatory mechanisms underlying
c-Myc-mediated cell cycle control offer promising prospects for innovative therapeutic
strategies against c-Myc-related cancers [98]. However, it is crucial to consider the dual
role of c-Myc, i.e., promotion of apoptosis and support of cell survival and differentiation,
when designing interventions. Further uncovering the complexities of c-Myc function
will allow researchers to gain a deeper understanding of how this transcription factor
contributes to cancer biology. We believe that the most effective therapeutic potential lies
in restoring the balance between p64 and p67, as demonstrated by studies that included
the inhibition of PKR and IRES-mediated translation [77,101,102,105,106]. The optimal
utilisation of this regulatory mechanism will require additional research into other proteins
that may influence this balance. Compounds that modulate PKR activity, IRES-mediated
translation, and other relevant proteins could be crucial to targeted treatments for aggressive
malignancies. Expanding the range of c-Myc modulators will be pivotal to the identification
of alternative strategies in cases of resistance and enable more personalised treatment
options for tumours of different origins.
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