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ABSTRACT

Background: Testing of pooled samples is an effective strategy for increasing testing capacity while saving resources
and time. This study aimed to validate pooled testing and gather real-life data on its use for Covid-19 surveillance with
a gargle lavage (GL) self-sampling strategy.

Methods: Two-stage pooled testing with pools of 6 and 12 samples was used for preventive testing of an asymptomatic
population and Covid-19 surveillance in Czech schools. Both GL and nasopharyngeal swabs were used for sampling.
Results: In total, 61,111 samples were tested. The use of pooled testing for large-scale Covid-19 surveillance reduced
consumable costs by almost 75% and increased testing capacity up to 3.8-fold compared to standard methods. RT-PCR
experiments revealed a minimal loss of sensitivity (0-2.2%) when using pooled samples, enabling the detection of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes with Ct values >35. The minor loss of sensitivity
was counterbalanced by a significantly increased throughput and the ability to substantially increase testing
frequencies.

Conclusions: Pooled testing is considerably more cost-effective and less time-consuming than standard testing for
large-scale Covid-19 surveillance even when the prevalence of SARS-CoV-2 is fluctuating. Gargle lavage self-sampling is
a non-invasive technique suitable for sample collection without a healthcare worker’s assistance.
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Background

The persisting Covid-19 pandemic caused by highly
transmissible SARS-CoV-2 (severe acute respiratory syn-
drome coronavirus 2) has affected nearly the entire
population of the world and all of its socio-economic
spheres [1]. According to the World Health
Organization’s weekly reports, there have been over 762
million confirmed Covid-19 cases and 6.8 million deaths
globally since the initial outbreak in late December 2019
[2]. The world has faced several Covid-19 waves over
the last three years, resulting in rapidly changing local
interventions to limit viral spread, including social dis-
tancing, school closures and interventions targeting
healthcare systems (HCSs). The cyclical spread of SARS-
CoV-2 has been influenced by seasonal, social and
political factors [3,4] as well as the emergence of new
SARS-CoV-2 variants [5-7]. In addition, the pandemic’s
dynamic and rapidly changing nature has necessitated
the development of reliable sampling strategies that can
be implemented in different settings and pandemic
phases. It has also placed unprecedented and rapidly
changing demands on HCS, leading to massive episodic
supply shortages and challenging work conditions for
healthcare employees. The gold standard for SARS-CoV-2
testing is nasopharyngeal swab (NPS) sampling followed
by RNA isolation and RT-PCR detection [8,9]. However,
given the urgent requirement for rapid and reliable
SARS-CoV-2 detection, there was a clear need to develop
and evaluate simplified laboratory protocols and meth-
ods for SARS-CoV-2 detection to reduce burdens on
HCS. Consequently, several studies have evaluated test-
ing procedures using alternative types of biological
material, extraction-free SARS-CoV-2 detection methods,
rapid antigen detection tests (RADTSs), serological assays,
self-sampling and pooled sample testing [10-14].

This study evaluates the implementation of gargle
lavage (GL) self-sampling and sample pooling in large-
scale testing in two different settings. Sample pooling is
a well-established diagnostic strategy for large-scale test-
ing that was first applied by Dorfman [15]. Several differ-
ent pooling approaches have since been developed and
used to screen for various diseases, including Covid-19
[15-18]. In addition, several different types of clinical
samples have been used for SARS-CoV-2 screening
instead of the gold standard NPS samples, including oro-
pharyngeal swabs, saliva, exhaled breath condensates
and self-collected GL samples [8, 14, 19]. Our goal was
to prove that adopting a time- and resource-saving
strategy that combines self-sampling and sample

pooling can provide an immediate increase in testing
capacity in real-life settings while reducing testing costs,
having a minimal impact on sensitivity, and placing few
additional demands on laboratory staff.

Materials and methods
Validation study

The detection of SARS-CoV-2 in pools containing 6 and
12 samples was validated using 45 SARS-CoV-2 positive
GL samples. These samples were selected based on prior
testing using the SARS-CoV-2 Nucleic Acid Detection Kit
(PCR Fluorescent Probe Method; Zybio Inc., Chongqing
Municipality, China). The outcomes were then used to
categorise the 45 positive samples into three groups
based on their cycle thresholds (Ct), requiring at least
two out of three targeted SARS-CoV-2 genes to fulfil the
group-defining criteria. The Ct value served as an indir-
ect gauge of viral load. Fifteen samples were classified
as highly positive (25 < Ct < 30), 15 as moderately posi-
tive (30 < Ct < 35) and the remaining 15 as weakly
positive (Ct > 35). The pool of SARS-CoV-2 negative GL
samples was utilised to dilute the positive samples in
the appropriate ratio. Samples were pooled in ratios of
1:6 and 1:12. The objective was to determine the detect-
ability of SARS-CoV-2 across various levels of viral load.

RNA isolated using the Nucleic Acid Extraction Kit on
automatic nucleic acid extractor Zybio EXM6000 (both
Zybio Inc.,, Chongging Municipality, China) was proc-
essed with three commercial RT-PCR assays to compare
their performance and usefulness for pool testing: the
Novel Coronavirus (2019-nCoV) Real-time Multiplex RT-
PCR Kit (Liferiver, La Jolla, CA), henceforth referred to as
‘Liferiver RT-PCR’, the 3DMed 2019-nCoV RT-gPCR
Detection Kit (3D Biomedicine Science & Technology Co.,
Ltd., Beijing, China), henceforth referred to as ‘3DMed
RT-PCR’, and the SARS-CoV-2 Nucleic Acid Detection Kit
(PCR Fluorescent Probe Method; Zybio Inc,, Chongqing
Municipality, China), henceforth referred to as Zybio RT-
PCR. All RT-PCR assays were used according to the
manufacturer’s instructions and all pools of 6 and 12
samples were tested within the same run.

Clinical study design

This study is a retrospective cross-sectional evaluation of
time efficiency, cost efficiency and performance of SARS-
CoV-2 testing by sample pooling compared to standard
testing in single reactions in an asymptomatic popula-
tion. The study was performed at the Faculty of



Medicine and Dentistry at Palacky University and the
University Hospital in Olomouc between August 2021
and February 2022. The study was performed in compli-
ance with the Helsinki Declaration according to a study
ethics proposal approved by the Ethics Committee of
the Faculty of Medicine and Dentistry at Palacky
University and the University Hospital in Olomouc
(protocol no. 162/20).

Sample collection

The first part of this study (arm A), conducted between
2 August 2021 and 12 October 2021, involved routine
screening of an asymptomatic population. In total,
32,598 clinical samples were collected at the Covid-19
sampling points of the University Hospital in Olomouc.
NPSs or GL samples were collected, depending on the
patients’ preferences: 27,265 NPS samples collected by
clinicians using an ESwab collection system (Copan,
Mantua, Italy) and 5333 GL self-samples collected using
GARGTEST sampling kits (IntellMed, Olomouc, Czech
Republic) under medical supervision.

In the second part of the study (arm B), samples from
5853 students and employees at 10 primary and second-
ary schools in the Olomouc region were tested weekly.
Weekly (Monday or Tuesday) self-sampling of students/
school employees between the 13 December 2021 and
the 14 February 2022 was a part of the Czech Covid-19
national screening programme in schools. In total,
28,602 GL self-samples were collected using the
GARGTEST sampling kit.

Each sample was barcoded, immediately delivered to
the laboratory according to the manufacturer's recom-
mendations, heat-inactivated at 65°C for 20min and
tested for SARS-CoV-2.

Sample pooling

A two-stage Dorfman pooling strategy was used
forSARS-CoV-2 detection [15]. Dorfman pooling is cur-
rently the simplest of the pooling methods. It has the
advantage of a simple pooling algorithm, allowing high
scalability and easy recognition of true positive samples.
Only samples from positive pools are identified for
retesting in separate reactions. Freedom EVO Clinical
150 and Freedom EVO Clinical 200 automatic pipettors
(Tecan Group Ltd., Mannedorf, Switzerland) were used
for liquid handling during the pooling process. Samples
were combined blindly in the order they were trans-
ported and received in the laboratory.
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In brief, the pooling protocol consists of two stages.
In the first stage, reserve plates holding 450 pl of heat-
inactivated primary samples were prepared by pipetting
robots (Figure 1). Simultaneously, pooled samples with a
total volume of 200 pl each were created by mixing
equal volumes of primary samples. Six-sample pools
were created by mixing 33 pl aliquots of six primary
samples in a well of a 96-well isolation plate, enabling
the analysis of 480 primary samples per plate in total.
Twelve-sample pools were created by mixing 17 pl ali-
quots of 12 primary samples, enabling the analysis of
1056 primary samples per plate. RNA was then isolated
from each pooled sample and used as a template in the
real-time reverse transcription polymerase chain reaction
(RT-PCR). Then, SARS-CoV-2 positive pools were identi-
fied. In the second stage, every sample from a positive
pool was retested individually, using 200 pl of the pri-
mary sample to identify true SARS-CoV-2 positive sam-
ples in the pool.

Labelled reserve plates with heat-inactivated primary
samples were sealed and stored at 4°C until the retest-
ing of samples from positive pools. Complete testing
was finished within 24 h, after which the reserve plates
were liquidated. The volume of stored primary samples
was sufficient for the second stage of testing and poten-
tially another round if the results were inconclusive.

RT-PCR SARS-CoV-2 detection

To maximise efficiency and avoid resource wastage, we
used two very similar nucleic acid extraction kits: the
Nucleic Acid Extraction Kit and scalable RNA Viral Prep
480 (IntellMed, s.r.o., Olomouc, Czech Republic). Both
RNA isolation methods were performed on automatic
nucleic acid extractor Zybio EXM6000 with sample vol-
ume of 200 ul and elution volume of 50 pl according to
the manufacturer's recommendations. RT-PCR was per-
formed using SARS-CoV-2 Nucleic Acid Detection Kit
(PCR-Fluorescent Probe Method) according to the manu-
facturer's recommendations. RT-PCR results for pool
reactions were evaluated according to the criteria listed
in Supplementary Table 1 and individual reactions were
evaluated as described previously [20].

Statistical and cost-benefit analysis

The statistical software R (version 4.1.0; R Core Team, R
Foundation for Statistical Computing, http://www.r-pro-
ject.org) was used for data evaluation, summarisation
and graphical presentation. The non-parametric
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Figure 1. Schematic illustration of the pooling workflow for testing of 6- or 12-sample pools and subsequent tracing of SARS-CoV-2 positive
samples: (a) sample delivery and heat inactivation, (b) reserve primary sample plate preparation and sample pooling, (c) first round of RNA
extraction and RT-PCR, (d) identification of SARS-CoV-2 positive pools, (e) selection of the corresponding primary samples from reserve
plates, (f) second round of RNA extraction and individual sample RT-PCR and (g) tracing of individual SARS-CoV-2 positive samples.

one-sample Wilcoxon test was used to evaluate differen-
ces between pairwise Ct values from single and pooled
reactions for each pool type (6 and 12 samples) and
gene (N, RdRP, E). Correlations between individual and
pooled Ct values were evaluated using the Spearman
rank correlation coefficient, which was tested against
zero. Statistical significance is reported using p values
for the relevant tests. Cost-benefit analysis was per-
formed in software R, all details are summarised in
Supplementary File 1.

Results
Validation study

To evaluate the accuracy of SARS-CoV-2 detection when
using sample pooling, we performed a validation study
using three different RT-PCR detection assays and 45
positive SARS-CoV-2 gargle samples. The detection rates
for the Zybio, Liferiver and 3D Med RT-PCR assays were
100%, 88.9% and 73.3%for six-sample pools and 97.8%,
84.4% and 57.8% for 12-sample pools, respectively
(Supplementary Table 2).

Additional analyses were performed using the SARS-
CoV-2 Nucleic Acid Detection Kit (Zybio Inc, Chongging
Municipality, China) based on the above results. Analyses

of paired Ct values for single and pooled samples
revealed negligible Ct value shifts and losses of PCR assay
sensitivity (Figure 2): the median Ct value shifts for six-
sample pools were 037 (p = .107; N gene), —0.04
(p = .818; RdRP gene) and —0.87 (p = .022; E gene), while
those for 12-sample pools were 0.79 (p = .002; N gene),
0.87 (p = .003; RdRP gene) and 0.1 (p = .37; E gene). The
individual and pool Ct values (Supplementary Figure 1)
for each gene were strongly correlated, with correlation
coefficients of r = 0.84 (N gene), r = 0.85 (RdRP gene)
and r = 0.85 (E gene) for six-sample pools (p < .001), and
r = 0.84 (N gene), r = 0.87 (RdRP gene) and r = 0.83 (E
gene) for 12-sample pools (p < .001). Based on these
results, the SARS-CoV-2 Nucleic Acid Detection Kit (Zybio
Inc., Chongqging Municipality, China) was chosen for rou-
tine SARS-CoV-2 screening using sample pooling. Zybio
detected all except one 12-sample positive pools. In this
pool, a sample with very low SARS-CoV-2 positivity (Ct =
38.67 (E gene); Ct = 35.55 (N gene); Ct = not detectable
(RdRP gene)) was included.

Positivity rates

Twelve-sample pooling was used to test 32,598 samples
from arm A of our study. The local SARS-CoV-2 positivity
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the proportions of positive pools and total numbers of tested pools.

The continuous line represents the weekly positivity rate in students and school employees, calculated as the ratio of weekly SARS-CoV-2
positive samples to the total number of tests performed weekly during school Covid-19 surveillance at our testing centre. The overall

national weekly positivity rate is shown by the dashed line.

rate among the asymptomatic population tested at our
centre was 0.6% (0.1-5.8%, Figure 3(a)), while the aver-
age overall national positivity rate was 2% (0.5-5.8%,
national data available at https://onemocneni-aktualne.
mzcr.cz/covid-19). In total, 179 SARS-CoV-2 positive sam-
ples were detected in arm A (Table 1). Due to an
increase in the SARS-CoV-2 positivity rate and a decrease
in the number of asymptomatic patients, we switched

from pooled testing to individual sample testing at the
beginning of week 41 in 2021. During Covid-19 surveil-
lance in schools (arm B), six-sample pooling was used to
test 28,602 GL samples. The average positivity rate at
schools was 2.7% (0.3-7.6%; Figure 3(b)), and the aver-
age overall national positivity rate was 20.5% (10.7-
29.5%). In total, 762 SARS-CoV-2 positive samples were
detected in arm B (Table 1).
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Table 1. Summary table.

Total 1:12 pools Incomplete 1:12 pools® 1:6 pools Incomplete 1:6 pools®

Number of samples tested 61,111 27,000 5509 28,356 246

Number of pools tested 7708 2250 732 4726 59

Number of positive pools 936 123 46 759 8

Number of negative pools 6831 2127 686 3967 51

PCR reactions performedb 14,200 3726 1098 9280 96

Number of positive samples 941 132 47 754 8

Empirical efficiency® 43 73 - 3.1 -

Saved tests (%)" 46,911 (77) 23,274 (86) 19,076 (67) 150 (61)

Cost savings (%)¢ 410,271 € (75) 225,072 € (16)

4411 (80)
- 185,199 € (34) -

Incomplete pools with less than 12 or 6 mixed samples.

PThe data include the number of RT-PCR pool reactions as well as the number of individual reactions needed for SARS-CoV-2 positive sample tracing.
“Calculated as the ratio of actually performed reactions (both pool and individual) and the number of individual reactions if only single reactions were used for

each collected sample.

dNumber of individual reactions saved by pool testing compared to testing individually (RNA isolation and RT-qPCR).
€Cost savings compared to testing in individual reactions (including costs for consumables and salaries of three laboratory technicians and one certified healthcare

professional).

Table 2. Comparison of testing costs and testing capacity in different settings.

Testing approach Cost per sample (€)°

Testing capacity (daily)b

Proportional capacity increase

vs. 96-single r. vs. 384-single r.

1:12 pool reaction® 1.1
1:6 pool reaction® 1.9
384-single reaction® 6.0
96-single reaction 9.9

4200 3.8 2.0
3300 3.0 1.6
2050 19 -
1100 - -

The final amount includes the cost of consumables and salaries (three laboratory technicians and one certified healthcare professional).
PThe daily testing capacity was determined in a laboratory staffed by three laboratory technicians and one certified healthcare profes-
sional with two liquid handlers, two nucleic acid isolation systems and two real-time PCR cyclers.

Pool reactions performed in 96-well plate format.

9Testing in 384-well plate format with reaction volumes reduced by 75% compared to the 96-well case.

Efficiency of pool testing

The individual empirical efficiency, defined as the number
of PCR tests needed to test all samples divided by the
number of actually performed tests, was 3.1 for six-sample
pools and 7.3 for 12-sample pools, while the overall
empirical efficiency was 4.3 (Table 1). Sample pooling also
reduced overall consumable costs by 75% compared to
testing in individual reactions. The throughput capacity
when testing pools of 12 and 6 samples in a real labora-
tory was about 3300 and 4200 samples per day (Table 2),
respectively. The 12-sample and six-sample pooling strat-
egies thus increased testing capacity 3.8-fold and 3.0-fold
compared to single reactions and 2.0-fold and 1.6-fold
compared to single reactions using 384-well plates.
Twelve- and six-sample pooling also reduced testing costs
to 1.1 € and 1.9 € per sample, respectively (Table 2).

Comparison of pooled and single reactions in arm A

The paired Ct values for sample pools and individual
testing from the second stage revealed Ct shifts of 3.38,
368 and 297 for the E, RdRP and N genes (p
value < .001) in cases where only one SARS-CoV-2 posi-
tive sample was present in a tested pool (Figure 4(a),
Supplementary Table 3). The Ct value shifts of SARS-
CoV-2 genes in pools with >2 SARS-CoV-2 positive

samples (Figure 4(b), Supplementary Table 3) were 1.79,
1.33 and 0.72 for the E, RdRP and N genes, but paired Ct
values for individual samples did not differ significantly
from the 12-sample pools. A combined comparison
revealed a high correlation between the Ct values for
pooled and individual samples (Supplementary Figure 2)
(r(N) = 0.66, r(RdRP) = 0.67, r(E) = 0.66; p value <.001).
All primary samples from 6/123 positive pools (4.9%)
were found to be negative when retested individually.
In the remaining 117 positive pools, one positive pri-
mary sample was found in 104 cases (84.6%), and >2
SARS-CoV-2 positive primary samples were found in 13
cases (10.6%) (Supplementary Figure 3).

Comparison of pooled and single reactions in arm B

The Ct shifts observed when comparing results of six-
sample pools and individual samples from the second
stage, containing only one SARS-CoV-2 positive sample,
were 2.82, 3.22 and 3.27 for the E, RdRP and N genes,
respectively (p value <.001) (Figure 5(a), Supplementary
Table 4). The median Ct value shifts in pools with >2
SARS-CoV-2 positive samples were 1.26, 1.57 and 1.88
for the E, RdRP and N genes, respectively (p value <.001)
(Figure 5(b), Supplementary Table 4). A combined com-
parison of Ct values revealed strong correlations
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Figure 4. Comparison of paired RT-PCR results for individual samples (Ind) and 12-sample pools (Pool) in arm A for pools with (a) only one
SARS-CoV-2 positive sample and (b) >2 SARS-CoV-2 positive samples. Incomplete pools were excluded from the final analysis of paired
results. £ gene: E gene of SARS-CoV-2; N gene: N gene of SARS-CoV-2; RdRP: gene for RNA-dependent RNA polymerase of SARS-CoV-2.

between the pool and individual results (Supplementary
Figure 4) (r(N) = 0.68, r(RdRP) = 0.7, r(E) = 067; p value
<.001). All primary samples from 136/759 positive pools
(17.9%) were found to be negative when retested indi-
vidually. One positive primary sample was found in 508
positive pools (66.9%), and >2 SARS-CoV-2 positive pri-
mary samples were found in 115 positive pools (15.2%)
(Supplementary Figure 3).

Discussion

This retrospective cross-sectional evaluation shows that
sample pooling is a feasible way of reducing resource

and time expenditure during SARS-CoV-2 screening in a
real-life setting. Using a two-stage pooling strategy, we
tested 61,111 samples collected during two separate
periods in different settings. While the collection of
NPSs by clinicians followed by testing in single RT-PCR
reactions remains the gold standard for SARS-CoV-2
detection, this process is costly and laborious. Our
screening process for an asymptomatic population and
large-scale episodic surveillance mitigates these prob-
lems by combining an alternative GL self-sampling pro-
cedure with pooled sample testing. Pooled sample
testing for SARS-CoV-2 has previously been evaluated in

several large-scale studies using both NPS samples
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positive sample and (b) >2 SARS-CoV-2 positive samples. Incomplete pools were excluded from the final analysis of paired results. E gene:
E gene of SARS-CoV-2; N gene: N gene of SARS-CoV-2; RdRP: gene for RNA-dependent RNA polymerase of SARS-CoV-2.

collected by clinicians [18, 21,22] and self-collected saliva
samples [23-25]. Moreover, a cross-sectional retrospect-
ive study using GL samples with five-sample pooling
was conducted to assess the viability of self-sampling
for large-scale surveillance (the study examined the
results of >55,000 tests) of asymptomatic hospital
healthcare workers (HCWs) with a SARS-CoV-2 preva-
lence below 1% [26]. Moreover, Thannesberger et al.
[27] demonstrated the viability of self-sampling by GL
and pool testing in statewide mass screening programs.

Diverse pooling strategies for detecting SARS-CoV-2
positive samples in pools of up to 32 samples have
been described and evaluated, including pooling of viral

media, pooling of collected swabs before RNA extrac-
tion, and pooling of RNA extracts [28-31]. Overall, it
seems that pool size should be chosen based on the
prevalence of SARS-CoV-2 in the population and its fluc-
tuation in order to maintain the cost-effectiveness of
sample pooling [32,33]. However, both our results and
those of Barak et al. [21] indicate that pooled testing is
an easily scalable resource-saving strategy if positivity
rates oscillate between 0.5 and 6%. As we expected
prevalence within this range and due to technical rea-
sons, we introduced a pooling of 6 and 12 samples.
While we used 12-sample pooling to screen the asymp-
tomatic population, we switched to six-sample pooling



for the Covid-19 surveillance in schools to reach better
efficacy since the national positivity rate significantly
increased. Although we did not implement the pool size
exactly according to the current positivity rate as recom-
mended [32], we still reached cost-effectiveness and,
more importantly, time-effectiveness better than
expected. Once the infrastructure was set up, our algo-
rithm demonstrated high flexibility and dynamic options
in setting the pool size. However, we were not com-
pelled to switch pool size dynamically because the posi-
tivity rate had not reached a threshold where the
pooling approach ceased to be advantageous. The dif-
ference in positivity rate in both periods could have sev-
eral reasons. First, in arm A, only asymptomatic patients
were included for pooled testing, resulting in expected
lower SARS-CoV-2 prevalence compared to overall
national positivity. Regarding the second period, where
pooled testing was implemented for Covid-19 surveil-
lance at schools, it was already proposed that children
are less susceptible to SARS-CoV-2 infection compared
to adults [34,35]. Moreover, the national positivity rate
includes all the positive tests in the Czech Republic,
while our local positivity rate is ascertained only from
samples tested in our centre, possibly resulting in those
discrepancies.

In our study, sample pooling eliminated the need to
perform 46,911 RNA isolation procedures and RT-PCR
reactions, giving an efficiency consistent with previous
reports [18, 21, 36]. Moreover, because pool testing is
significantly less time-intensive than conventional test-
ing using single reactions, its implementation in our
laboratory more than doubled our testing capacity, to a
maximum of 4200 samples per day. In fact, the labora-
tory’'s capacity exceeded the daily sampling capacity of
the sampling point where the primary samples were col-
lected. This made it possible to properly evaluate the
potential and benefits of GL self-sampling, which has
the important requirement of not requiring supervision
by a HCW. Moreover, all GL samples could be collected
simultaneously and delivered at once, avoiding potential
limits on testing capacity. Recently published studies,
including one from our group [14, 20, 37], have shown
that the sensitivity and specificity of GL sampling are
comparable to paired NPSs, making it an excellent
option for Covid-19 screening and also for diagnostics of
other respiratory infections.

While mass testing using sample pooling and self-
sampling methods holds promise in containing potential
future pandemics of a similar nature, it is imperative to
assess the preparedness and requirements for
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establishing the necessary infrastructure. The sample
processing outlined in this study involves a combination
of automated procedures and optimised processing
techniques, including the use of liquid handlers and sim-
plified storage of primary samples. Although the utilisa-
tion of high-volume plates for primary sample storage
has minimal impact on overall expenses, the procure-
ment costs associated with liquid handlers may present
a significant barrier to achieving the efficiency demon-
strated in this study. Nonetheless, storing primary sam-
ples in labelled reserve plates alleviates the strain on
storage capacity, ensuring precise sample organisation
for high-throughput testing and facilitating their reuse
for rapid retesting.

The main problem with automated processing and
pooling by liquid handlers was the low fluidity of some
samples. These samples were challenging to pipet and
were a significant source of a possible contamination.
False positivity was observed in both study cohorts but
mainly in arm B, where false positives comprised 17.9%
of the positive pools. The Ct values for the false positive
pools were very high (Ct >38 for all three targeted
SARS-CoV-2 genes). Only one SARS-CoV-2 gene was
detected in 78.7% (107/136) of the arm B false positive
pools, while two or all three SARS-CoV-2 genes were
detected only in 11.0% (15/136), and 10.3% (14/136) of
the false positive pools, respectively. We attributed the
high false positivity rate in arm B to contamination
resulting from the high daily testing capacity and ele-
vated SARS-CoV-2 viral loads during the omicron Covid-
19 outbreak. Another contributing factor was the use of
relaxed criteria for identifying SARS-CoV-2 positive pools,
which only required positivity for one gene and a Ct
value <41. Applying more stringent criteria used in the
evaluations of individual primary samples to the arm B
pooled samples reduced the false positivity rate to just
6.2% (47/759). However, the original false positivity rate
and the impact of evaluation criteria used for pool test-
ing are similar to those reported elsewhere [38].

GL self-sampling combined with pooled RT-PCR test-
ing was used to reduce the risk of SARS-CoV-2 transmis-
sion among students in several schools in place of rapid
antigen testing, which was deployed nationally in
schools at the time. Testing was performed weekly on
Mondays or Tuesdays as students returned to school
after the weekend. Receiving between 1200 and 3100
samples per day, the median delivery time of test results
was less than 10h from sample collection. Although
samples were combined blindly, it was done in order as
they were delivered in the laboratory and possibly might
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increase the efficiency of pool testing. As published else-
where, combining samples from the same school or
social group seemed beneficial to increase the efficiency
as testing samples from individuals with similar probabil-
ities of SARS-CoV-2 infection can prevent unnecessary
retesting [18, 21, 36]. In total, 762 students tested posi-
tive for SARS-CoV-2 during two months of testing in pri-
mary and secondary schools, preventing outbreaks and
complete school closure. Testing at three-day or weekly
(as described here) intervals was considered adequate to
prevent new SARS-CoV-2 outbreaks if same-day delivery
of results and isolation of SARS-CoV-2 positive individu-
als could be ensured [39]. These testing frequencies
were also used in a prospective multicentre study that
tested the feasibility of SARS-CoV-2 surveillance using
saliva swabs obtained by the ‘Lolli method’ in primary
and secondary schools [40]. Additionally, Vander Schaaf
et al. [23], developed and implemented a testing pro-
cedure for Covid-19 surveillance at schools that had
similar testing frequency and result delivery criteria;
although their protocol called for saliva samples instead
of GL, the reported turnaround time (8 h) for testing 930
students was comparable to that in our study.

In Covid-19 screening, test accessibility, testing turn-
around time and frequency are more important consid-
erations than test sensitivity [39]. Nevertheless, losses of
sensitivity due to sample dilution are a central concern
when considering the implementation of sample pool-
ing. Therefore, a proper validation study should be con-
ducted before switching to sample pooling. Mahmoud
et al. [41] reported a pronounced loss of sensitivity
when using four- and eight-sample pooling for Covid-19
mass screening, and found that the sensitivity of an
assay targeting a single SARS-CoV-2 gene (ORF1ab) fell
below 50% in weakly positive samples when using sam-
ple pooling. Our validation study similarly showed that
not all RT-PCR assays are suitable for use with pooled
samples; only those with sufficient sensitivity to detect
viral genes in weakly positive pools (>35 Ct) should be
considered. When using an assay satisfying this require-
ment, we observed only a minimal loss of sensitivity; the
Ct value shift when comparing pooled and single sam-
ples was <1 Ct value shift among pooled and single
reactions. However, when this assay was applied to real
samples, it exhibited a loss of sensitivity consistent with
previous reports [21-23, 29]: analysis of Ct value shifts
for both validation and real data revealed a loss of sensi-
tivity when comparing pooled and single samples but
not when comparing 6-sample and 12-sample pools.
This is consistent with the results of Chen et al. [29],

who obtained similar results when comparing pools of 6
and 10 samples. These findings indicate that dilution
may have only a minor effect on sensitivity when using
sample pooling strategies.

Our study has several strengths. Most notably, it uses
real-world data from an implementation of pooled test-
ing for SARS-CoV-2 surveillance in outpatients using an
alternative sampling strategy to increase testing capacity
and lessen the burden on HCWSs. The results obtained
demonstrate the viability of the pooling strategy and
show that it can be implemented relatively easily with
minimal loss of sensitivity while providing a substantial
increase in sample throughput. Moreover, its successful
long-term use in this study shows that it can be incor-
porated sustainably into routine laboratory operations
and is suitable for daily or episodic testing, such as in
schools. Pooled testing of such large numbers of sam-
ples (>3000 samples per day) is also logistically chal-
lenging because the samples have to be preserved until
deconvolution and SARS-CoV-2 positive sample tracing
can be done. We therefore developed a simplified
laboratory process that includes immediate sample
inactivation to facilitate handling, automated robotic
pipettors for liquid handling, and primary sample preser-
vation in 96-deep well plates, enabling easy sample
tracking and retesting while saving storage and working
space. The major limitations of pool testing procedures
are sample transport management and an increased
possibility of missing true positive samples because
incorrectly collected samples can be masked within
pools. Despite these issues, our results suggest that
pooling may be useful in a wide range of public health
surveillance strategies and disease monitoring programs
including SARS-CoV-2 testing.

In conclusion, we have clearly shown that pooled
testing has significant advantages in Covid-19 surveil-
lance. Pooled testing has resulted in considerable cost
savings and increased testing capacity with minimal loss
of sensitivity. Moreover, the implementation of GL col-
lection has not only reduced demands on HCWSs but
also facilitated remote self-sampling at schools, optimis-
ing testing efficiency.
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