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 Abstract: Neurodegenerative disease (ND) incidence has recently increased due to improved life ex-
pectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are 
poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and con-
trolling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow 
progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' 
onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) 
could be at higher risk of developing AD or PD. However, no increase in ND incidence has been re-
ported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β 
amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery 
led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, im-
munization/vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. 
All the different approaches have been analysed here. Future perspectives on new therapeutic strate-
gies for both disorders are concisely examined. 
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1. INTRODUCTION 

1.1. General Overview 

 Neurodegeneration refers to the progressive deterioration 
and loss of function of neurons. Neurodegenerative diseases 
(ND) include Alzheimer's disease (AD), Amyotrophic lateral 
sclerosis (ALS), Friedreich ataxia, Frontotemporal lobular 
degeneration (FTLD), Huntington's disease (HD), Lewy 
body dementia, Multiple Sclerosis (MS), Parkinson's disease 
(PD), and Spinal muscular atrophy (SMA). All NDs have 
different origins. Genetic involvement in several NDs has 
been studied for years [1]. HD and ALS are primary exam-
ples. HD is a progressive brain disorder caused by a single 
defective gene on chromosome 4 that codifies for the protein 
huntingtin. The disease generally manifests between 30 and 
50 years [2]. ALS is a neurodegenerative disease that affects 
motor neurons. Around 60% of ALS patients have a genetic 
correlation with the disease. The genes associated with ALS 
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are: 1) superoxide dismutase 1 (SOD1), 2) TAR DNA-
binding protein (TDP-53), 3) fused in sarcoma (FUS) and 4) 
chromosome 9 open reading frame 72 (C9orf72) [3]. Some 
other genes have been recently discovered. MS is an auto-
immune neurodegenerative disease associated with demye-
lination, inflammation and irreversible axonal loss [4]. Mye-
lin is the target antigen, and demyelination results in axonal 
loss, the primary cause of irreversible neurological disability 
in MS [4-6]. MS's inflammatory aspects are unique com-
pared to other NDs [4-6]. The immunogenetic analysis of 
MS patients has revealed a link between the polymorphisms 
of HLA [6]. HLA DRB1*15:01 and HLA DRB1*04 with 
younger age of onset, HLA DRB1*03 could be linked to 
pediatric forms, and MHLA-B*44:02 appears to be associat-
ed with less cortical atrophy and fewer MRI brain lesions 
[6]. Since AD and PD are the most common neurodegenera-
tive disorders (4% of individuals over 65 and 1% of people 
over the age of 60, respectively), the review will focus main-
ly on these diseases [7, 8]. Genetic predisposition, malnutri-
tion, the excessive use of legal and non-legal drugs, comor-
bidities and other environmental events may increase the 
prevalence and earlier onset of NDs. 
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2. GENETIC STUDIES IN AD AND PD 

 AD is characterised by 1) the presence of amyloid-β 
plaques, 2) the formation and deposition of neurofibrillary 
tangles (NFTs) composed of hyperphosphorylated tau pro-
teins, 3) oxidative stress, 4) neuronal death starting from the 
hippocampus, 5) astrocytosis and microgliosis 6) neuroin-
flammation, and 7) NLRP3 inflammasome activation; all of 
which lead to progressive memory loss and eventually de-
mentia [7, 9-10]. No simple relationship exists between spe-
cific genes and increased susceptibility to AD. It is a poly-
genic, multifactorial and heterogeneous disease. The early 
onset of the disease [11] has been linked to three main genes 
that are responsible for a particular form of pathology: amy-
loid precursor protein (APP) on chromosome 21, presenilin 1 
(PSEN1) on chromosome 14, and presenilin 2 (PSEN2) on 
chromosome 1. Other genes involved in AD are ABCA1, 
ApoE3/4, CYP2D6, CHAT, CHRNA7, ADAMTS12, IL15, 
FHIT and ESR1. Many other pathology-related genes are 
linked to other neurodegenerative diseases, i.e. F5, MAP1B, 
and BCAS3 are related to AD and PD [12, 13]. Single nucle-
otide polymorphisms (SNP) of both pro- and antiinflamma-
tory cytokines, IL-1, IL-6, TNFα, IL-4, IL-10, TGFβ [14], 
and its promoters, IL-1α -889, IL-6 -176, IL-8 -251, IL-10  
-1082, IL-10 -819, and IL-18 -607 have been reported in AD 
[14, 15] and PD [15] suggesting a link with immune re-
sponse. Recently, the upregulation of chemokines CCL5, 
CXCL1, and CXCL16 has been recorded in the brains of AD 
patients [16]; nonetheless, its role in leukocyte migration in 
CNS is still unclear. α-Synuclein is a presynaptic neuronal 
protein that appears to control neurotransmitter release. Mu-
tations in the α -syn gene encoding, A18T, A29S, A30P, 
E46K, H50Q, G51D, A53E, and A53T are linked to familial 
PD [17]. The polymorphisms A18T, A29S, and A30P are 
associated with a typical PD phenotype and slight clinical 
characteristics; however, patients with polymorphisms 
E46K, H50Q, G51D, A53E, or A53T, manifest severe dis-
ease with rapid progression [17]. Polymorphisms in the hu-
man leukocyte antigen, HLA-DRA, HLA-DRB1 (rs660895) 
and HLA-DRB, IL-6 rs1800795, TNF-α rs1799964, PON1 
rs854560, CYP2D6 rs3892097, BST1 rs11931532, and 
CCDC62 rs12817488 are also involved in PD [21-25]. They 
may be co-associated with other genetic markers of the dis-
ease [18-21]. Genetic screening may be helpful to families 
with one or more cases of these NDs. Preventive medicine, a 
healthy diet, exercise, and control of comorbidities may de-
lay disease onset.   

3. THE BLOOD-BRAIN BARRIER (BBB) AND THE 
BLOOD-SPINAL CORD BARRIER (BSCB) 

 The central nervous system (CNS) is highly regulated 
and guarded by physical barriers and specialised cells. The 
blood-brain barrier (BBB) and blood-spinal cord barrier 
(BSCB) are not physical barriers, but cells (pericytes) that 
heavily restrict the flow of molecules by tightening blood 
capillaries and the secreting VE-cadherin and P-glycoprotein 
[22]. These physical barriers can be more permeable with 
age [23]. The main difference between the BBB and the 
BSCB is the size of the zonula occludens (multiprotein com-
plexes that prevent leakage of solutes and water between the 
epithelial cells) and the number of pericytes, allowing a more 

extensive range of molecules to pass through the barrier in 
BSCB. It is, therefore, assumed that the spinal cord may be 
more susceptible to inflammatory insults than the brain [24]. 
In neuroinflammatory disorders like PD, AD, MS, stroke/ 
ischemia, epilepsy, traumatic brain injury (TBI) and spinal 
cord injury (SCI), there is a dysfunction of the BBB and 
BSCB [24]. This dysfunction is characterised by phenotypi-
cally altered endothelial cells and decreased tight junction 
proteins facilitating leukocyte migration [24]. Chronic in-
flammation or acute injuries can disrupt the integrity of the 
BBB, leading to the infiltration of systemic immune cells 
and mediators, further exacerbating a proinflammatory envi-
ronment in the CNS [24]. Incomplete or impaired responses 
observed in ageing can be linked to an increased risk of de-
veloping neurodegenerative diseases [25]. Innate immune 
responses recruit cells of the adaptive immune system by 
secreting various cytokines and chemokines that prompt lo-
cal cells to express adhesion molecules on the BBB and cost-
imulatory molecules on microglia [23-26].   

4. NEURODEGENERATION AND NEUROINFLAM-
MATION 

 Neurodegeneration occurs when cells of central nervous 
system discontinue their physiological roles and eventually 
die, leading to a loss of neural function. It is mediated by the 
production of neurotoxic intermediaries, which activate in-
flammatory responses (neuroinflammation) [27]. Neuroin-
flammation comprises the inflammatory response against 
abnormal proteins and their aggregates, pathogens and cell 
danger messengers, and the local activation of glial cells, 
astrocytes and oligodendrocytes leading to neuronal damage 
[27-29]. 
 Fig. (1) is a schematic representation of the relationship 
between neurodegeneration and neuroinflammation. Altera-
tions in cell metabolism and/or protein expression can lead to 
immune response activation. The migration of leukocytes to 
the CNS is a secondary event after local cell activation. 
 Pathogens and byproducts of cell death, as well as danger 
signals from damaged or stressed tissues (known as 
DAMPs), trigger the activation of local central nervous sys-
tem cells through specialized pattern-recognition receptors 
(PRRs). Among the proteins involved in danger signals are 
heat shock proteins, chromatin, high mobility group box 
chromosomal protein 1 (HMGB-1), and aggregated modified 
or misfolded proteins such as amyloid-beta (Aβ), α -
synuclein (α-syn), and tau. The main PRRs are the Toll-like 
receptors (TLRs) [29-31]. However, other receptors are also 
involved in cell activation, such as advanced glycation end-
products receptors (RAGE) [32], VLDL/Apo E, and scaven-
ger receptors that bind apolipoproteins lipoproteins and 
undegraded products of metabolic pathways (Fig. 2). Cell 
activation through these receptors leads to inflammasome 
activation (NLP3) along with Cas-1 generating IL1β and IL-
18 through NFκB activation. NFκB activation induces the 
transcription of proinflammatory cytokines [31]. The physio-
logical inhibition of IL-1β is IL-1 receptor antagonist (IL-
1ra) [33]. This receptor binds IL-1β but does not generate a 
biological effect [33]. In the absence of IL-1ra, the autocrine 
effects of IL-1β induce the transcription of IL-6 and TNFα, 
amplifying the inflammatory response. IFN α is produced 
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Fig. (1). General overview of the interaction between neurodegenerative diseases, immune response, neuroinflammation and neurodegenera-
tion. On the left side, ageing, genetic and epigenetic factors, and viral, microbial or parasite infections induce alterations in cell metabolism 
with impaired abnormal protein degradation, autophagy and apoptosis, and the secretion of pathogenic proteins (red arrow). Pathogenic pro-
teins can induce neurodegeneration and immune response activation (red arrows). All the previous events can cause activation of the immune 
response (purple arrow). Local and/or peripheral immune response activation induces neuroinflammation (brown arrow), leading to neuro-
degeneration. Neural cell death also activates the immune response (red double arrows). (A higher resolution/colour version of this figure is 
available in the electronic copy of the article). 
 

 
Fig. (2). The cellular receptors and pathways involved in neurodegeneration and neuroinflammation. The figure represents the events in-
volved in cell activation in CNS. The processes of cell activation englobe microglia, oligodendrocytes, astrocytes and neurons. (A higher 
resolution/colour version of this figure is available in the electronic copy of the article). 
 
upon pathogenic infection and alerts the cells of pathogen 
invasion [34]. IFNγ receptors are related to microglia activa-
tion in pathological conditions. Other cytokines like IL-17 
can be produced by activated T lymphocytes recruited by the 
inflamed tissue, and this cytokine recruits neutrophils to the 
inflammatory site.  

 Inflammasome activation has been suggested to induce 
the onset of AD and PD [34]. Senescence and inflammatory 
markers may help predict clinical progression in PD patients 
[35] since the innate immune sensors NLRP3 and Cas-1 are 
often activated [36]. Dysregulated NLRP3 function observed 
in aged mice confirms the involvement of NLRP3 in cogni-
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tive dysfunction and physical performance; therefore, 
NLRP3 is an excellent therapeutic target for multiple age-
related neurological disorders [37]. The IL-1β signal cascade 
is an essential pathogenic factor in NDs. Overexpression of 
caspase-1 and IL-1 β  were reported in the nigrostriatal re-
gions of a PD mouse model and the brain and cerebrospinal 
fluid of PD patients [38, 39]. Blocking IL-1β ameliorated 
pathological changes in a mouse model of AD [40]. Even 
though evidence suggests that Caspase-1 may turn α-syn into 
a highly aggregation-prone variant [41], it is not directly 
responsible for the death of dopaminergic neurons. Unfortu-
nately, Caspase-1 inhibitors did not improve the survival of 
grafted dopaminergic neurons in mouse PD models [42]. 
Activation of TLR due to dysbiosis in the gut microbiome 
may further impair immunity and accelerate disease progres-
sion in PD patients [43]. TLR gene transcription and protein 
expression are increased in NDs. TLR2 and TLR4 are up-
regulated in AD [44, 45]; TLR2, TLR5 and CD14 in PD [28, 
46]. It is yet unclear whether this over-expression is a com-
pensatory mechanism against the accumulation of toxic pro-
teins and/or alternative cell activation that contributes to dis-
ease progression [28, 44], for example, the SNP Asp299Gly 
polymorphism of the TLR4 gene (linked to susceptibility to 
gram-negative bacterial infections) attenuates the inflamma-
tory response. That specific polymorphism may protect 
against sporadic AD [45]. 
 The accumulation of AGEs in cells and tissues is a stand-
ard feature of ageing, which is accelerated in neurodegenera-
tion [32]. AGEs are responsible for forming amyloid plaques 
and neurofibrillary tangles involved in astrocytosis, micro-
gliosis, and neuronal cell death [32]. Activated astrocytes, 
oligodendrocytes and microglia decrease myelin production 
and poorly execute repair mechanisms [47, 48]. NFkB plays 
an essential role in NDs since it is responsible for the tran-
scription of proinflammatory cytokines [49, 50]. Several 
authors have reported an upregulation in the transcription of 
beta-amyloid precursor protein cleaving enzyme 1 (BACE1) 
by NFkB. BACE1 induces beta-amyloid production and the 
transcription of miR-125b in AD [48, 49]. Dopaminergic 
neurons in PD brains expressed higher levels of activated 
NF-κB than controls [50, 51]. Additionally, dysfunctional 
NFkB cell signalling is involved in neurodegeneration. 
NFkB promotes the transcription of proinflammatory cyto-
kines [31] and high levels of RelA in the nigral dopamine 
neurons and glial cells. On the contrary, the c-Rel subunit 
can exert neuroprotective actions in PD [31]. Uncontrolled 
TNF-α secretion plays a role in the pathogenesis of neuro-
degenerative disorders [52, 53]. TNF-related apoptosis-
inducing ligand (TRAIL) can be triggered in neurons by β -
amyloid and consequently cause apoptosis of brain cells 
[53]. TRAIL is expressed in the cerebral cortex, often near 
Congo-red-positive amyloid plaques in the brains of AD 
patients [54]. Cytokine accumulation in the brain has been 
observed in PD, ischemia, and AD, leading to chronic in-
flammation, gliosis, synaptic loss, and glutamate toxicity 
[55, 56]. In AD patients, increased pro-inflammatory cyto-
kine levels are correlated with low levels of IL-1ra [56]. It 
has become evident that acute inflammatory responses in-
crease the risk and progression of neurodegenerative diseas-
es; however, controlling inflammation and delivering suita-
ble therapies on time can result in better patient outcomes. 

Cognitive decline in transgenic AD mouse models was asso-
ciated with elevated TNF-α levels in the brain. Furthermore, 
when the TNFR1 gene in transgenic AD mice was deleted, 
researchers observed an increase in Aβ generation, plaque 
burden and cognitive deficits [57]. Interestingly, another AD 
mouse model showed an inverse correlation between cyto-
kines IL-1 and TNF α production and amyloid-β clearance 
[58]. Astrocytes and oligodendrocytes are affected by in-
creased production of reactive oxygen (ROS) and nitrogen 
species (RNS). These radicals amplify the inflammatory re-
sponse [25-36], causing neurodegeneration as observed in 
experimental models of senile plaques in AD and ALS [59].  
 The inflammatory response induces changes in BBB and 
BSCB, facilitating leukocyte migration. TLRs may also play 
roles in neuronal plasticity as they regulate the processes 
involved in neurogenesis and neurite outgrowth [24-26, 48]. 
Inflammaging is a state of chronic low-grade multi-organ 
inflammation often seen in older adults [59]. Senescent cells, 
characterised by damaged or weakened cellular repair mech-
anisms, are responsible for this form of immune dysregula-
tion. Most importantly, “pathogen-free” inflammation may 
contribute to PD and AD pathogenesis [60]. Indirect evi-
dence of subclinical inflammation was found in the Fram-
ingham study, where higher spontaneous production of IL-1 
or TNFα (AD markers in older individuals) by peripheral 
blood mononuclear cells was observed and defined as sub-
clinical inflammation [61]. Under physiological conditions, 
α-syn, highly expressed in the brain, is involved in lipid me-
tabolism, microtubule activity, modulation of tau phosphory-
lation and neurotransmitter release [62]. In pathological cir-
cumstances, neurons can release α-syn, generating inflamma-
tory responses. Impaired lysosomes cannot degrade internal-
ised α-syn; thus, cathepsin B, a proteolytic enzyme that pro-
motes inflammation [63], is released into the cytoplasm [63-
65]. Pathological α -syn becomes insoluble by forming β -
sheet-like oligomers (protofibrils) [66]. This insoluble form 
interacts with microglial TLR2, which activates NF-κB and 
NLRP3, leading to the microglia's release of TNF-α and IL-
1β, causing neuroinflammation in PD [67]. This inflammato-
ry cascade may be further exacerbated by mitochondrial dys-
function, observed in postmortem tissue of PD patients and 
models [68]. A proposed mechanism for the progressive na-
ture of PD is that misfolded oligomeric α -syn spreads from 
cell to cell and induces misfolding of native α-syn in a prion-
like fashion [69], resulting in the loss of dopamine pathways 
in the substantia nigra (SN) and the development of Lewy 
bodies [69, 70]. Impaired dopamine activity is therefore re-
sponsible for slow movements (bradykinesia), muscular ri-
gidity, trembling, postural instability, autonomous nervous 
system alteration and other nonmotor signs such as memory 
impairment [71]. Increased secretion of abnormal proteins 
leads to the formation of autoantibodies.  
 Autophagy is impaired in NDs [72, 73]. The process is 
essential for cell survival and eliminating unwanted or path-
ogenic proteins and organelles. The critical sensor of the 
process is mTOR [72]. In nourished neurons, phosphorylated 
mTOR blocks autophagy and apoptosis. However, mTOR 
can be anomalously activated in pathological stressed neu-
rons by radicals, inflammatory intermediates and dysfunc-
tional mitochondria, rendering cells unresponsive [72-74]. 
Consequentially, cellular metabolic impairment in the CNS 
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leads to neurodegeneration. Thus, metabolic impairment of 
cells in the CNS is responsible for several processes involved 
in neurodegeneration. 
 Several reports have linked lipid metabolism and 
transport genes with NDs [75]. The involvement of APOE in 
AD has been extensively analysed. However, due to im-
paired mitochondria metabolism, lipid degradation is limited, 
promoting lipid accumulation in droplets. These lipid drop-
lets lead to a more dysfunctional cell [76]. Fatty acid-
overloaded astrocytes accumulate acetyl CoA, inducing 
STAT3 activation [76]. Activated STAT3 activates microglia 
and downregulates the production of cellular phospholipids 
and myelin [76]. Dietary supplementation or regular con-
sumption of healthy fats (ω3 fatty acids and short-chain fatty 
acids) seems to provide a certain degree of neuroprotection 
and reduce disease progression by lowering inflammation 
[77, 78] and, perhaps, by improving the composition of the 
patient’s microbiota [79-80]. A genetic correlation between 
AD and gut microbiota has recently been published [81]. In 
the analysis, Eubacterium fissicatena was found to be a pro-
tective bacteria, while Collinsella, and Veillonella species 
were linked to an increased risk. Further research is needed 
to establish the role of diet and microbiota in neurodegenera-
tion and immune interactions. In the dopaminergic neurons 
of PD patients and mouse models, the microsomal enzyme 
prostaglandin E synthase-1 (mPGES-1) was shown to be 
overexpressed, and consequently, prostaglandin E2 levels 
were locally increased [75]. Deleting the mPGES-1 gene 
stopped PGE2 production in these neurons and inhibited 
neurodegeneration in PD model 6-OHDA [75]. Fig. (2) illus-
trates different cellular receptors and general responses relat-
ed to neurodegeneration and neuroinflammation. On the left 
side, various receptors are essential in cell activation and 
stimulation of the immune response through cytokine secre-
tion and abnormal proteins leading to autoantibody produc-
tion. In the centre, the rest of the processes are described 
earlier.  

5. IMMUNE RESPONSE IN NEURODEGENERATION 

 Microglia, a type of macrophage exclusive to the CNS, 
usually produces antiinflammatory molecules and neu-
rotrophic factors (NF) that influence the behaviour of astro-
cytes and neurons [71]. When these cells encounter patho-
gens or damaged tissue, they activate, promoting an inflam-
matory response that engages the immune system and initi-
ates tissue repair. In most cases, this response is self-
limiting. In ageing and other conditions such as AD, micro-
glia become hyper-reactive, secreting large amounts of cyto-
kines, chemokines, and other neurotoxic molecules. As ex-
pected, microglia have a different transcriptome profile in 
neurodegenerative diseases and ageing than normal tissue 
[35-37, 82]. Postmortem tissue from PD and AD patients 
exhibited HLA-DR+ reactive microglia [38, 39], which surg-
es with neuronal degeneration throughout the nigrostriatal 
pathway in PD [39, 40]. 
 Astrocytes, microglia, and neurons express components 
of the complement pathway and its receptors [41], suggest-
ing that local inflammation activates the complement cas-
cade activation, leading to cellular stress and death. An in-
creased amount of complement cascade molecules has been 

reported in the plasma, CSF, and brain tissues of patients 
with NDs [42]; for example, in PD patients, complement 
molecules are increased along with inflammatory cytokines 
[43]. In AD, Aβ plaques are surrounded and infiltrated by 
activated astrocytes and microglia, which are believed to be 
the primary source of antigen-antibody-complement complex 
[83].  
 Fibrillar Aβ, β -pleated sheets, and tau neurofibrillary 
tangles have been shown to directly activate the classic com-
plement pathway in vitro without antibodies [83]. C1q was 
found to be tightly associated with Aβ plaques and caused 
surrounding neuronal atrophy through microglial engulfment 
[83]. Additionally, C3 production was linked to increased 
activated NFκB in the brains of AD patients [83-86]. Inhibi-
tion of the C1q pathway (using either antibody treatment or 
gene knockout) in wild-type mice prevented synapse loss 
after an injection of oligomeric-Aβ [85-87]. Also, C5a recep-
tor inhibitors seem to decrease Aβ plaque load and reduce 
hyperphosphorylated tau and neuroinflammation in AD 
mouse models [85, 86].  
 Neutrophils are essential members of the innate immune 
response. They release proinflammatory and cytotoxic fac-
tors that induce cell death [88, 89]. They enhance cellular 
metabolism and cytokine-mediated signalling, organise mi-
tochondria, and activate leukocytes in AD patients [89]. The-
se immune cells enter the AD brain via LFA-1 integrin and 
surround Aβ plaques with neutrophil extracellular traps 
(NET), promoting BBB damage and neuronal toxicity [89]. 
In contrast, blocking LFA-1 integrin decreases neutrophil 
population and traffic in AD mouse models, reducing 
memory loss and neuropathological features [89]. 
 Mast cells are tissue polymorphonuclear cells involved in 
innate immunity. They are involved in neuroinflammation by 
inducing oxidative stress, secreting chemokines and inflam-
matory cytokines, and activating microglia. These cells have 
been involved in AD and ALS [90]. 
 NK cells are part of the innate immune lymphocytes 
(ILC) involved in the immunosurveillance of tumours and 
elimination of senescent cells [90]. Their role in neurodegen-
erative disease is still under research. Its dysfunction is im-
plicated in infection, malignancy, inflammatory disorders, 
and age-related senescent cell accumulation [91, 92]. Two 
NK cell subpopulations are detected in peripheral blood: a) 
A cytotoxic NK cell that expresses CD16 and is involved in 
neuroinflammation; b) A tolerogenic NK cell expressing 
CD56 and assisting in the resolution of neuroinflammation 
[92]. NK cells have three main cytotoxic mechanisms: 1) the 
release of granzyme and perforin, 2) activation of the extrin-
sic apoptotic pathway by Fas ligand and TRAIL, and 3) anti-
body-dependent cell-mediated cytotoxicity (ADCC) [93, 94]. 
Alterations in peripheral NK cell number and receptor ex-
pression have been reported in PD patients and mouse mod-
els [94, 95], yet additional research is needed to understand 
the role of these cells.  

5.1. MHC and CD1 in Neuroinflammation 

 Different HLA genes associated with autoimmune dis-
eases are linked to PD (HLA-DRA and HLA-DRB1) [18, 
19]. HLA-DR antigens are upregulated in the microglia of 
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Fig. (3). Illustrates the diverse components of the immune response involved in neuroinflammation. (A) Three groups are observed. The in-
nate immune response group involves microglia, mastocytes, neutrophils, macrophages, dendritic cells and proteins of the complement cas-
cade. The second group, with innate and adaptative immune response characteristics, are NK, NKT and Tγδ cells. The adaptative group in-
cluded T lymphocytes, B lymphocytes, antibodies and cytokines. (B) illustrates the major T-cell subpopulations that arise depending on the 
central CD4 and CD8 subpopulation, the antigen presented and the cytokines involved in the differentiation. Cytokines are crucial for the 
differentiation of T-cell subpopulations, which are involved in physiological and pathological responses. (A higher resolution/colour version 
of this figure is available in the electronic copy of the article). 
 
these patients [96]. Interestingly, a genome-wide association 
was observed between the CD1a gene polymorphism and the 
increase in neurofilament light in elderly individuals [97]. 
Neurofilament light is a cytoplasmic protein highly ex-
pressed in large myelinated axons in neurological diseases. 
The migration of CD1a-positive myeloid cells into plaque-
associated microglia suggests a link between this antigen and 
neurodegenerative diseases. CD1a also presents T cells to 

self and abnormal lipids linked to AD [98]. Dyslipidemia, 
inflammation and neurodegenerative diseases are connected; 
however, statin therapies have not been effective, at least in 
PD [99, 100]. 

 T lymphocytes (Fig. 4). In NDs, increased amounts of 
proinflammatory T cells (Th1 and Th17) have been reported, 
along with decreased numbers of antiinflammatory T helper 
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cells (Th2) and Treg [101-106]. Interestingly, autoimmune-
specific T cells were found to facilitate CNS healing pro-
cesses in sterile mechanical injuries to the brain or spinal 
cord (Protective autoimmunity). Memory-specific brain self-
antigens CD4+ T cells were found in healthy humans and 
rodents [105, 106]. However, recent AD [101-106] and PD 
[105-108] data demonstrate that active cytotoxic T cells 
damage neurons. The apparent contradiction lies in when the 
cytotoxic cells are detected. At early stages, eliminating neu-
rons that carry pathological protein accumulation may delay 
disease progression; however, tissue destruction is uncon-
trolled in later stages as many more cells and processes have 
been affected. 
 T cells that recognise Aβ1-42 as an antigen are detectable 
in AD [109] and likely contribute to forming plaques [110]. 
AD patients had increased activated CD8+ T cells in the CSF 
compared to healthy older adults, correlating with clinical 
and structural AD markers [107]. In AD, CNS infiltrating T 
cells produce IFN-γ and IL-17, activating microglia and ex-
acerbating neuroinflammation [111-114]. CCL5 (RANTES) 
is the most common chemokine involved in AD neurodegen-
eration since it regulates the expression and secretion of 
normal T cells [111, 115].  
 In murine models, upregulation of α-syn induces infiltra-
tion of B and T lymphocytes in the substantia nigra pars 
compacta [116-118] and CD3+/CD4+ T cell migration into 
the neocortex, hippocampus and striatum [117, 118]. How-
ever, dopaminergic neurons were spared if the mice were 
CD4 deficient [119]. 
 Fig. (3) depicts the different subpopulations that arise 
from naïve CD4 and CD8 cells, the cytokine requirements 
and the production of cytokines. The role of the different 

CD8 subpopulations is described since it is less common in 
the literature than CD4 subpopulations. 
 Lymphocyte-Activation Gene 3 (LAG3) Receptor 
(CD223) has been recently implicated in PD pathophysiolo-
gy [120-124]. In a study performed in China, females were 
more likely to carry variants of this gene [121-142]. Soluble 
CD223 was considered a prediction marker [123] since it 
interacts with TLR4, an essential trigger of neuroinflamma-
tion in PD [124, 125]. Even though CD223 is involved in T-
cell inhibition and exhaustion, its role in PD remains a matter 
of research.  
 Treg (Fig. 3). These cells provide neuroprotective effects 
against many neurological diseases in healthy individuals 
[126]. Tregs can reduce C3 Astrocytes activation and, con-
sequently, inflammation [126, 127] in PD [128] and AD 
models [129-131]. Specific Aβ1-40 Tregs can prevent the 
development of Aβ plaques; however, AD patients lack 
Tregs [132]. Low levels of Foxp3+ regulatory T cells, often 
reported in females with the Apoeξ4 genotype [131], may 
affect the choroid plexus in AD [131]. In ALS, these cells 
are dysfunctional and correlate with disease progression rate 
and severity [127]. 
 Transferring Tregs to reduce neuroinflammation and 
promote cell survival has been proposed as a therapeutic 
strategy for AD [133]. Cognitive abilities improved in mouse 
models after treatment with Treg-blocked Th1 responses and 
reversed Aβ-induced inflammation [133]. In turn, higher 
levels of IL-2, IL-6, TNFα, MCP-1 and T cells were found in 
PD models [125, 128].  
 Moore and coworkers [134] showed that vitamin-D in-
duction of T-reg cells in animal models decreased neuro-
degeneration. The therapeutic use of vitamin D in patients 

 
Fig (4). The schematic figure illustrates the main characteristics of immune response in injuries, infection and ageing in the CNS. 
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with neurodegenerative disorders has been proposed since 
many patients usually lack ergocalciferol [135]. 
 Th17 cells (Fig. 3). These cells were reported to be in-
creased in animal models of neurodegenerative diseases 
[136]; the IL-23/IL-17A axis has been related to age-
associated inflammation. In early PD, circulating Th17 cells 
augment, some of which respond to α-syn stimulation [137-
139]. Genetic variations and microbial infections are pri-
marily responsible for upregulating IL-17A and increasing 
AD susceptibility. IL-17A also promotes β  amyloid produc-
tion, neutrophil infiltration to the brain, neuroinflammation, 
increased FASL, and microglial activation [139]. 
 Other T cytotoxic (Tc) subpopulations like Tc9 and Tc22 
(Fig. 3) have been indirectly involved in mouse models of 
PD and AD; however, more studies are needed to define the 
role of these diseases and their importance in human pathol-
ogy. 
 B cells may be directly involved in ND as they contribute 
to pathogenesis [140-142]. Although B cells have not been 
detected in the brains of patients with PD [140, 141], IgG-
coating Lewy body [142] deposits are found on dopaminer-
gic neurons, suggesting B cell activation is involved in this 
pathology. The amount of IgG immunopositive neurons is 
inversely proportional to the cell loss in the substantia nigra 
[142]. Most neurons were IgG1-positive, but IgG2 and IgG3-
positive neurons were also present, IgG2 being mainly prom-
inent in the damaged substantia nigra [142]. 
 A general summary of the immune response observed in 
injuries and ageing is presented in Fig. (4). The figure aims 
to give a background of the changes in both conditions and 
how these changes can be related to NDs. Several character-
istics observed in ageing are comparable to those described 
in NDs. 

6. AUTOIMMUNITY MARKERS AND NEURO-
DEGENERATIVE DISEASES 

 The presence of autoantibodies in NDs has been docu-
mented. Serum and CSF levels of antibodies against Aβ42 
(the most aggregation-prone and neurotoxic species of Aβ) 
seem to differ between AD patients and healthy controls, but 
the research is inconsistent [143-145]. Autoantibodies appear 
to be essential for AD diagnosis [146]. 
 In an early study, autoantibodies against dopaminergic 
neurons were reported in the CSF of 78% of PD patients 
compared with 3% of controls [147]. Chen et al. [148] 
demonstrated that plasma antibodies isolated from PD pa-
tients induced the loss of dopaminergic neurons in rats. 
Moreover, the CSF of PD patients showed a cytotoxic effect 
on dopaminergic neurons, which enhanced SN degeneration 
in a time- and dose-dependent manner [149]. Multi-epitopic 
autoantibodies against α -syn were detected in the serum of 
65% of all patients with PD [150]; their presence strongly 
correlated with an inherited mode of the disease but not other 
disease-related factors. In another study, total autoantibody 
levels were significantly higher in the PD group than in AD 
patients and healthy controls [151]. Interestingly, one re-
search group detected reduced α -syn natural autoantibody 
levels in patients with PD compared to individuals with AD 
and HC [152]; other groups have reported differences [153, 

154]. Autoantibodies against melanin [155], GM1 gangli-
oside [156] and anti-beta2-glycoprotein I have also been 
described [157]. There are several possible mechanisms by 
which autoantibodies may induce dopaminergic cell death 
[157]: 1) receptor-induced extrinsic apoptosis, 2) antibody-
complement complex cell death, 3) activation of surrounding 
microglia and 4) competitive binding inhibition [157]. In 77 
PD patients, Benkler et al. [158] found three prevalent auto-
antibodies: a) antineuronal cells 10.3% vs. 1.3% of controls; 
b) anti-brain lysate 9.1% vs. 1.3%; c) anti-dsDNA 10.3% vs. 
2.6%. Anti-dsDNA was related to dyskinesia, whereas anti-
dsDNA and anti-brain lysate were related to depression 
[158]. Additionally, IgM autoantibodies and anti-myelin-
associated glycoprotein (anti-MAG) were significantly ele-
vated in the CSF of PD patients [158, 159]. It is imperative 
to mention that some autoantibodies have been observed in 
patients with para-neoplastic syndromes [160], although 
more research is needed to understand their presence better.  
 There is a molecular similarity between a protein of her-
pes simplex virus 1 (HSV1) and human α-syn [161]; autore-
active antibodies produced against HSV1 infection cross-
react with a human α-syn homologous peptide. In a serologic 
study, 58% of PD patients were positive for this protein 
compared to 18% of controls [161]. This peptide is ex-
pressed in the membrane of dopaminergic neurons, leading 
to immune cell attraction and activation, which later destroys 
them [161]. 
 Antigenic epitopes can activate CD8+ T cells involved in 
autoimmune responses and may play an important role in 
neurodegenerative diseases [162]. CD4+ and CD8+ T cells 
of PD patients recognise α -synuclein peptides [112, 113, 
162], and genome-wide association studies have associated 
PD with MHC genes (HLA-DRA and HLA-DQB1) [18]. 
Perhaps the thymus lacks α-syn epitopes, and thus, negative 
selection of T lymphocytes does not occur [163]. 
 Neuromelanin (NM) is another potential target of auto-
immune attacks on dopaminergic neurons as DC maturation 
is triggered upon their recognition [164]. The autoimmune 
response against NM would be directed against NM-rich 
cells in the brain, leading to dopaminergic cell death [165]. 
Unsurprisingly, PD patients were demonstrated to have 
higher levels of anti-neuromelanin antibodies in serum [164]. 
Deposits of complement C1q on the surface of extracellular 
neuromelanin were found in the brains of postmortem PD 
patients [166, 165].  
 Frontotemporal lobar degeneration (FTLD) is a neuro-
degenerative disorder characterised by intracellular accumu-
lation of ALS-related proteins fused in sarcoma (FUS) and 
TAR DNA-binding protein 43 (TDP43), as well as tau. Be-
havioural alterations, language impairment, and deficits of 
executive functions are often observed in FTLD. Reports 
conclude that 23.4% of FTLD patients had serum autoanti-
bodies against the GluA3 receptor, α -amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptor (AMPAR) [167, 
168]. The incubation of primary cultures of rat hippocampal 
neurons with anti-GluA3 antibody-containing CSF led to 
decreased GluA3 subunit synaptic localisation of the AMPA 
receptor and dendritic spine loss. Antibody titers correlate 
well with age at disease onset, with earlier symptom onset 
observed in those patients with higher antibody levels [167-
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169]. One study observed autoantibodies in 18.9% of pa-
tients with degenerative dementia (FTD = 114, AD = 53, and 
-DLB = 7) [169]. The autoantibodies most frequently detect-
ed were 1) the anti-extractable nuclear antibody profile, 2) 
the rheumatoid factor antibody, 3) the perinuclear antibody 
and 4) the cytoplasmic anti-neutrophil cytoplasmic antibod-
ies [169]. It is essential to mention that these antibodies are 
also usually involved in several autoimmune disorders. 
 High levels of Aβ-IgG immune complexes were found in 
AD patients' blood serum and CSF and were associated with 
poor performance on cognitive tests [170]. Moreover, anti-
bodies against AD-related proteins are also increased 1) tau 
[171], 2) heavy neurofilaments [171], 3) the nicotinic acetyl-
choline receptor α7 (α7 nAChR)-specifier [172], 4) dopa-
mine [173], 5) serotonin [173], 6) glutamate [174], 7) gluta-
mate receptor [175], 8) S100b (an acidic calcium-binding 
protein produced by astrocytes) [176, 178], 9) glial fibrillary 
acidic protein (GFAP) [177], 10) microglia [178], 11) astro-
cyte autoantibodies [179], 12) oxidised low-density lipopro-
teins (ox-LDL) [180], 13) rabaptin-5 (a protein involved in 
cellular vesicle trafficking) [181], 14) the receptor for ad-
vanced glycosylation end products (RAGE) [182], 15) angio-
tensin-2 type-1 receptor [183], 16) aldolase [178], 17) ATP 
synthase [184], and 18) ceramides [185] (autoantibodies in 
AD reviewed in [186]). 
 AD considers Natural autoantibodies against Aβ protec-
tive since they assist protein clearance [186]. However, ac-
tive and passive immunisations with Aβ for therapeutic pur-
poses may lead to immune-complex deposition and peri-
vascular inflammation [186].  
 Autoantibodies to ATP synthase could be pathogenic in 
AD since they may inhibit ATP synthesis, alter mitochondri-
al homeostasis and induce apoptosis [184, 187]. In mice, the 
intracerebroventricular administration of ATP synthase auto-
antibodies, purified from AD patients, caused neuronal dam-
age in the hippocampus [188]. Also, autoantibodies to 
ceramide increased amyloid plaque burden in a transgenic 
mouse model of AD [189]. Thus, using monoclonal antibod-
ies to decrease the amount of abnormal protein deposition 
seems to produce pathologic precipitates in the tissue leading 
to more damage. 

7. NEURODEGENERATIVE DISEASES IN PATIENTS 
SUFFERING AUTOIMMUNE DISEASES 

 The risk of neurodegenerative disease in patients with 
autoimmune diseases is still an area of intensive research. In 
Sweden, an analysis involving 310,522 patients and 33 auto-
immune disorders showed an increased risk of PD in patients 
with Graves's disease, Hashimoto's disease, pernicious 
anaemia, and rheumatic polymyalgia [190]. The same group 
reported a higher incidence of dementia in patients with type 
1 diabetes mellitus, giant-cell arteritis, pernicious anaemia, 
Sjögren's syndrome, sarcoidosis, celiac disease, chronic 
rheumatic heart disease, Crohn's disease, chronic glomerulo-
nephritis, pemphigus, psoriasis, rheumatoid arthritis, and 
ulcerative colitis [191]. In a Korean population-based study, 
Cho et al. [192] showed that Graves' disease patients had a 
33% higher risk of developing PD than controls, regardless 
of age, sex or comorbidities [192]. However, one study did 

not find a significant difference in the prevalence of thyroid 
autoimmunity and dysfunction between PD patients and neu-
rological controls (10.8% in PD patients vs. 10% in neuro-
logical controls) [193]. These results were later confirmed in 
a meta-analysis [194]. In a Mendelian randomisation study, 
multiple sclerosis and Sjögren syndrome were more strongly 
associated with AD than psoriasis, rheumatoid arthritis (RA) 
and type 1 diabetes [195]. Epidemiological, genetic and clin-
ical research is required on this topic. 
 There are still controversies concerning the possible risk 
of neurodegenerative diseases in patients with RA. Some 
groups have shown an increased risk of dementia [196-198], 
while others have not [199, 200]. On the other hand, Policic-
chio et al. [201] demonstrated a lower incidence of AD in 
RA patients [201]. The discrepancies in interpretation may 
rely on the monitorisation of the inflammatory condition. 
Cooper and coworkers [202] showed a correlation between C 
reactive protein levels, RA and increased risk of PD [202], 
suggesting that chronic inflammation brought on by the dis-
ease may lead to the development of NDs. There is a higher 
prevalence of PD in patients with bullous pemphigoid, an 
autoimmune blistering dermatosis of elders, compared to 
patients with psoriasis [203]. Further, patients with ankylos-
ing spondylitis are at higher risk of AD and PD [204]. 
 Inflammatory bowel disease, IBD (Crohn's disease and 
ulcerative colitis), was identified as an independent risk fac-
tor for PD and AD development [205-207]. In a Danish 
study, IBD was associated with slightly increased dementia 
risk, particularly FTLD [205]. Similar results were found in a 
Taiwanese study [206]. One meta-analysis revealed a higher 
risk of AD and PD among Crohn’s disease and ulcerative 
colitis patients [207]. Another exciting report by Aggarwal et 
al. [208] showed that IDB patients manifested AD at young-
er ages and, in addition to IBD, other inflammatory poly 
arthropathies and systematic connective tissue disorders 
(psoriasis, rheumatoid arthritis and multiple sclerosis) are 
also linked to AD [209, 210]. In a Mendelian randomisation 
study, Cui and coworkers [210] found that individuals with 
IBD had a significantly higher risk of developing PD. How-
ever, other Mendelian randomisation studies showed no evi-
dence of an association between IBD and PD [211, 212]. 
There are still many questions to answer on this topic, as 
research is quite contradictory.  

 In Taiwan, Lui FC and coworkers [213] reported an in-
verse association between systemic lupus erythematosus 
(SLE), a chronic, systemic autoimmune disease, and the risk 
of PD, with the crude hazard ratio (HR) being 0.60 (95% 
confidence interval 0.45-0.79) in comparison with non-SLE 
patients in a population-based study. Nonetheless, systemic 
lupus erythematosus and Sjögren syndrome were highly as-
sociated with dementia risk in a study by Wang and cowork-
ers [214]. Yet, there wasn’t a significant causal association 
between SLE and AD in another Mendelian randomisation 
study [215]. 
 The association between autoimmunity and neurodegen-
erative diseases is still an evolving topic. In the next section, 
the effect of therapies that modulate the immune response in 
autoimmune diseases has generated new perspectives which 
are essential to analyse. 
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8. IMMUNOLOGIC TREATMENT AND RISK OF 
NEURODEGENERATIVE DISEASE 

 In animal models of PD, a reduction in dopaminergic 
neuron degeneration has been observed in animals treated 
with nonsteroidal antiinflammatory drugs (NSAIDs) [216]. 
In two prospective studies (men Health Professionals Fol-
low-up Study,1986-2000, and Women Nurses' Health Study, 
1980-1998), a lower risk (0.55) of PD onset was found in the 
participants who reported regular use of nonaspirin NSAIDs 
as compared to the non-regular users [217]. In addition, a 
lower, but not highly significant, risk of PD was also ob-
served among men and women who took two or more aspirin 
tablets daily compared with nonusers [217, 218]. In another 
cohort of men and women from the US (The Cancer Preven-
tion Study II Nutrition Cohort), PD risk was lower among 
ibuprofen users than nonusers [219]. Compared with nonus-
ers, the relative risks were 0.73% for people who consumed 
fewer than two tablets/per week and 0.62% for those who 
had one or more tablets/per day [216-218]. Gao and cowork-
ers [219] reported an association between ibuprofen and 
lower PD risk, not shared by other NSAIDs or acetamino-
phen. In another study (Neuro Genetics Research Consorti-
um), smoking, coffee, and over-the-counter NSAID use as 
individual factors exhibited a 20% to 30% risk reduction for 
PD [220]. Multi-analysis associated the leucine-rich repeat 
kinase--2 gene penetrance with NSAID use and PD [221]. 
However, recent meta-analyses had contrasting results for 
the same disease [222, 223]. Table 1 illustrates the effect of 
different compounds with anti-inflammatory effects. 

 Patients with RA treated with TNF-blocking agents 
(etanercept, adalimumab, infliximab) rarely develop AD 
[224, 225]. In addition, TNF inhibitors showed a long-term 
effect in reducing the risk of AD during 20 years of follow-
up in RA patients [226]. On the other hand, Etanercept and 
Adalimumab were associated with lower AD risk in patients 
with psoriasis [225, 226]. Methotrexate may also have  
neuroprotective effects [227]. Similarly, the benefit of anti-
TNF therapy was observed in patients with ankylosing spon-
dylitis [228]. On the contrary, no effect was seen in patients 
using conventional disease-modifying antirheumatic drugs 
(cDMARD) [228]. One study reported a 78% reduction in 
the incidence rate of PD among patients with inflammatory 
bowel disease exposed to anti-TNF therapy compared with 
those not [229]. 
 A lower risk for AD was also associated with using 
methotrexate combined with anti-TNF [230]. Although, 
there was no significant difference comparing the risk of AD 
between RA patients receiving Methotrexate or TNF block-
ers, only a combination of both [230]. Treatment with 
abatacept (T-cell activation inhibitor) plus tofacitinib (JAK 
inhibitor) and tocilizumab (IL-6 inhibitor), or TNF inhibi-
tors, did not decrease the risk of AD in arthritic patients 
[231]. Studies revealed no statistical association between 
Alzheimer’s disease and hydroxychloroquine use [232, 233]. 
A recent publication showed the contrary, with a lower AD 
incidence risk than methotrexate [234]. Other immune-
modulating drugs like sulfasalazine have been linked to neu-
ropathic pain and migraine but not dementia [235]. Further 
evidence is required. 

 Plasma levels of microRNA-153, microRNA-223 and 
microRNA-30e, involved in NLRP3 antagonism, are de-
creased in PD patients [236]. In particular, microRNA-30e, a 
negative NLRP3 regulator, reduces the loss of dopaminergic 
neurons and improves motor and behavioural symptoms 
[236, 237]. Thus, miRNA-30e may be the therapeutic link 
between autoimmunity and neurodegeneration.  
 A decreased incidence of AD has also been observed 
with other treatments used in autoimmune diseases. Patients 
treated with calcineurin inhibitors who underwent a solid 
organ transplant have a lower incidence of AD than the gen-
eral population [238]. Diagnoses of AD were reduced among 
individuals ≥ 65 years with prior influenza vaccination com-
pared to those without the vaccine [239]. In a group of pa-
tients with bladder tumours, age ≥ 75 years, those treated 
with intravesical Bacillus Calmette-Guerin (BCG) had a sig-
nificantly decreased risk of developing AD and PD as com-
pared to patients who only underwent transurethral resection 
[240]. Other drugs like metformin are still under discussion 
[241]. Epidemiological analysis of large-scale populations 
may provide more associations since the above publications 
could only represent random and unspecific associations 
when large trials or studies are conducted. 

9. IMMUNOPHARMACOLOGY AND NEURODEGE-
NERATIVE DISEASES 

 Studies on inflammation, autoimmunity, and neurodegen-
erative diseases have opened new therapeutic options in neu-
rodegenerative diseases. In vitro, releasing toxic factors by 
activated microglia can be partially blocked by NSAIDs [242].  
 To facilitate the analysis of different strategies that have 
been used in PD and AD, we divided the most relevant ones 
into tables. Table 1 [243-277] represents tested anti-
inflammatory compounds, mainly in animal models. The 
analysis of NSAID, as commented before, was tested in two 
clinical trials in which no reports have been published sug-
gesting its lack of effect on AD. It should be noted that the 
population study involved normal individuals in which the risk 
of NDs was analysed over time compared with the drug's ef-
fect on individuals with the incipient disease. The use of anti-
tumour drugs is exciting since it may provide new options 
for patients with known genetic risks for the disease. The rest 
of the compounds have not reached clinical trials, but chemi-
cal modifications may lead to exciting structures with poten-
tial use in NDs. 
 A fascinating approach based on different populations' 
diets and natural remedies has identified several natural com-
pounds. The primary goal is to decrease oxygen and nitrogen 
radical formation and discover new anti-inflammatory struc-
tures that could pass the blood-brain barrier. Oral intake of 
some of these compounds has been proven to reduce ND 
onset and progression. Most of these compounds are flavo-
noids that significantly affect immune response in several 
diseases [278]. 
 Different structures used to treat various diseases were 
repurposed for NDs. Three critical pathways were targeted: 
NLP3/Cas-1, TNFα inhibition, immunomodulation, p38αMK2 
and the aryl hydrocarbon receptor (Table 1). Promising com-
pounds in preclinical studies underwent clinical trials with 
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Table 1. Effect of different compounds tested in AD and PD. 

Compound Proposed Effect/Mechanism Disease Animal 
Model Clinical Trial References 

NSAID 
Ibuprofen 

Prednisone 
Fenamic Acid 

Anti-inflammatory AD/PD Yes 
Yes (no effect reported),  

NCT00239746,  
NCT00000178 

[221, 222,  
242-244] 

Anti-tumour drugs Decreases microtubule and Tau  
phosphorylation AD No  

(in vitro) No [245-248 

Minocycline Antibiotic, anti-inflammatory AD/PD Yes 
Yes, PD (no change) 

NCT00063193  
NCT00076492. 

[249, 250] 

Sitagliptin 
Saxagliptin 
Vildagliptin 
Exenatide 
Liraglutide 

Antidiabetic AD Yes No [251-253] 

Rosiglitazone Pioglitazone Anti-inflammatory AD/PD Yes No [254-257] 

TAK-242 Inhibits TLR4 AD/PD Yes No [68, 258, 259] 

Baicalin Inhibits TLR4 and NFkB AD/PD Yes No [260] 

GX50 Inhibits NFκB and MAPK AD/PD Yes No [261] 

AntiTLR2 monoclonal Inhibits TLR2 PD Yes No [262] 

Ibrutinib Inhibits BTK and NLP3/Cas-1  
signalling AD Yes No [263] 

Thalidomide Inhibits TNFα and acts as an  
immunomodulator AD Yes No 

(no effect in preliminary experiments) [264-265] 

Lenalidomide,  
Pomalidomide 

Inhibits TNFα and acts as an  
immunomodulator AD/PD Yes Yes 

NCT04032626 (AD) [266-267] 

Cyclosporin Blocks calcineurin decreases α-syn PD Yes No [268] 

Tacrolimus Inhibits leukocyte activation and 
TNFα signalling AD/PD Yes No [269-270] 

GPI-1485 (modified  
Tacrolimus) 

Inhibits leukocyte activation and 
TNFα signalling PD Yes Yes NCT00076492 [271] 

Sinomenine Inhibits p38α, NFkB and MK2 axis  
(in vitro) AD/PD Yes No [272] 

Neflamapimod Inhibits p38α and MK2 axis AD/PD Yes 

Yes NCT03402659 
NCT03435861  
NCT04001517  
(Lewy bodies) 

[273, 274] 

Laniquimod	 Inhibits aryl hydrocarbon receptor	 PD	 Yes	 Not yet	 [275]	

MW150, MW100	 Inhibits p38α and axis MK2	 AD	 Yes	 Yes  
NCT05194163	 [276]	

Small synthetic molecules Inhibits p38α and axis MK2 AD/PD Yes Not yet [277] 

 
mixed results. Neflamapimod seems to be the most promis-
ing compound, although more clinical trials and long-term 
follow-up are required [273, 274]. Laniquimod was previ-
ously used to treat MS, is now used to treat HD and may 
have a significant role in synucleinopathies by decreasing 
neuroinflammation [275]. Table 2 illustrates the effect of 
different natural products tested in AD and PD, Curcumin 
also seems to activate the aryl hydrocarbon receptor, reduc-
ing neuroinflammation [309]. 
 As described earlier, complement is produced by different 
cells in the CNS and autoantibodies against the abnormal pro-

teins have been detected [309]. Therefore, cell death due to 
antibody complement complex can be blocked by know inhib-
itors. Even though results in animal models seem promising, 
there has been only one clinical trial involving neuromyelitis 
optica, and no other trials have been proposed. This therapy 
may be used in combination with others as a coadjuvant.  
 The use of cytokine inhibitors in NDs is an exciting ap-
proach (Table 3); however, the main problem is treating pa-
tients with symptoms, especially during the early phases. 
TNFα inhibitors, also used in autoimmune diseases, have 
been reported the most. The use of other inhibitors is still 
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Table 2. Effect of different natural products tested in AD and PD. 

Compound Proposed Effect/Mechanism Disease Animal 
Model Clinical Trial References 

Vinpocetine (alkaloid) TLR modulator. Decreases TLR2 and TLR4  
transcription PD Yes Local non-registered 

2019 [279] 

Farrerol Inhibits TLR4 and TLR4 pathways PD Yes No [280] 

Kaempferol Inhibits TLR4 and TLR4 pathways PD Yes No [281] 

Dihydrotestosterone Inhibits TLR4-induced inflammation LPS neuro 
inflamed Yes No [282] 

Silymarin (flavonoid) Downregulates TLR4 expression PD Yes No [283] 

MCC950, Kaempferol, 
Oridonin, Fingolimod,  
AZ11645373, Celastrol 

Inhibits NLP3 PD Yes No [284] 

Arglabin Inhibits Cas-1 and  NLP3 (in vitro) AD No No [285] 

Tetrandrine Inhibits NFkB (in vitro) AD Yes No [286] 

Tiliroside, Siliroside Inhibit NFkB, p38MAPK signalling (in vitro) AD No No [287-288] 

Apigenin, Luteolin Inhibit  IFNγ via STAT1 (in vitro) AD Yes No [289-290] 

Quercetin, Epigallocatechin/3 Inhibit  NFkB AD Yes No [291-293] 

Resveratrol Inhibits PGE2 and IL1β AD Yes Yes [293-294] 

Curcumin Inhibits NFkB and MAPK signalling. Increases  
anti-inflammatory cytokines through SOCS AD Yes 

Yes 
NCT01001637 
NCT00099710 

No results posted 

[295-300] 

Parthenolide, Artemisin Downregulate IL6 and TNFα (in vitro) AD Yes No [301-302] 

Thymoquinone,  
Carnosic Acid, 

Carnosol,  
Ginkgolides 

Inhibit pre-inflammatory cytokines (in vitro) AD/PD No No [303-305] 

Crocin, 
Crocetin 

Inhibit pro-inflammatory cytokines, NO and ROS. 
NFkB. Induce clearance of βA by autophagy AD/PD Yes No [306] 

Astaxanthin Inhibits NO, COX/2, and IL6. Induces clearance of 
βA by autophagy AD/PD Yes No [307] 

 
Table 3. Effect of inhibitors of the complement pathway and cytokines in AD. 

Compound Proposed Effect/Mechanism Disease Animal Model Clinical Trial References 

Eculizumab Anti-C5 monoclonal antibody blocks 
cleavage AD Yes Yes, NCT00904826  

(Neuromyelitis optica) [310] 

Compstatin family  
(Cp40 and MNY10) Inhibit C3 AD Yes No [311] 

ANX005 Monoclonal antibody inhibits C1q  
binding/activity AD Yes No [312] 

Anakinra IL1 receptor antagonist AD Yes No [313, 314] 

TNFα inhibitors  
Infliximab 
Etanercept 

Reduce amyloid plaques and  
Tau `phosphorylation AD Yes 

Yes 
NCT01068353 
NCT00203359 
NCT00203320  
NCT04571697  

(TNF inh vs. methotrexate) 
Others ongoing 

[315-322] 

IL-12 and IL-23 inhibitors Inhibit IL-12 and IL-23 AD Yes. Gender  
differences No [66, 323-325] 
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Table 4. Monoclonal antibody therapy in AD. 

Monoclonal Target Animal Model Clinical Trial Effect(s) References 

Bapineuzumab β-amyloid Yes Yes None [328-329] 

AAB-003 (modified  
Bapineuzumab) β-amyloid Yes Yes None [330] 

Solanezumab,  
Ganteberumab β-amyloid Yes Yes None [331-334] 

Crenezumab β-amyloid Yes Yes None [335] 

PBD-C06 pGlu-Aβ Yes No Unknown (in humans) [336] 

Donanemab β-amyloid Yes 
Yes (early AD) 
NCT03367403  
NCT02624778 

Cognitive improvement [337-339] 

Aducanumab	 β-amyloid aggregates	 Yes	

Yes (FDA approved) 
NCT02484547 
NCT02477800 

Other trials are active	

Cognitive improvement	 [340-344]	

Lecanemab	 β-amyloid aggregates	 Yes	
Yes (FDA approved) 

NCT01230853  
Other trials are active	

Improvement of clinical symptoms. 
Secondary effects?	 [345-347]	

 
under scrutiny (Table 3). Inhibitors of other cytokines, IL-1 
receptor antagonists and IL-12/IL-23 have been analyzed 
(Table 3). The possible role of IL-10 is under discussion 
[326]. 
 Anti-Aβ antibodies in healthy individuals were the basis 
for clinical trials of intravenous immunoglobulin (IVIg) in 
patients with AD. However, despite promising initial results, 
a recent meta-analysis of blood derivatives showed no clear 
benefit of IVIg after five clinical trials despite promising 
initial results [327]. No current clinical trials involve IVIg in 
neurodegeneration. 
 The use of monoclonal antibodies in AD has gained at-
tention in recent years. After the lack of effect of the first 
monoclonals, several new schemes for generating new anti-
bodies were used (Table 4). The more successful ones are 
Aducanumab and Lecanemab, two antibodies approved by 
the FDA for AD. Aducanumab has not significantly im-
proved cognitive response in AD patients (Table 4). Never-
theless, there have severe concerns with Lecanemab about 
brain shrinkage and patient death. This high-affinity anti-
body can probably activate damaged cell death, decreasing 
brain volume [348]. It may be helpful to analyse brain autop-
sies in detail and the mechanism of this effect before discon-
tinuing their use in the clinic. 
 Considering that autoantibodies are usually produced 
against abnormal or phosphorylated tau, it is an excellent 
strategy to immunize against abnormal tau to prevent the 
effect of this protein on healthy tissues (Table 5). The vac-
cine would require the activation of specific non-polyclonal 
B cells. It is still early to analyze the first vaccine's impact; 
nonetheless, several other vaccines are underway, which may 
be interesting to compare.  
 The use of monoclonal antibody therapies against α 
synuclein has not been, up to date, thriving despite the dif-
ferent types of antibodies generated against the variety of 
pathological proteins (Table 6). Moreover, vaccine trials are 

still underway, and it is too early to state whether they are 
effective (Table 7).  
 Several other approaches have been proposed and are 
underway to perform trials using specific immunization 
[374-376]. However, care must be taken due to inconven-
iences reported in previous efforts [377-380]. 

10. OTHER TREATMENTS 

 Treatments with cytokines that downmodulate inflamma-
tory cytokines and cell activation have also been proposed. 
One example is the granulocyte-macrophage colony-
stimulating factor (GM-CSF). In the PD mouse model, GM-
CSF treatment generated a protective Treg response by 
downregulating microglial activation and decreasing the 
death of dopaminergic neurons [381]. Sargramostim (GM-
CSF) demonstrated a safe and well-tolerated profile. In phase 
I clinical trials with PD patients, NCT03790670 sargramost-
im increased Treg frequencies and function without affecting 
the levels of effector T cells [381]. Compared with pretreat-
ment baselines and placebo-treated controls, sargramostim-
treated patients had lower clinical ratings of disease severity, 
and magnetoencephalography revealed improved signalling 
in cortical regions relevant to motor function [382]. Five 
patients with Parkinson's disease who were administered 
sargramostim for a duration of one year experienced a reduc-
tion in Movement Disorder Society-Sponsored Revision of 
the Unified Parkinson's Disease Rating Scale (MDS-
UPDRS) scores [383]. A new clinical trial, NCT05677633, 
on biomarker validation following sargramostim treatment is 
underway. 
 Therapeutic plasma exchange (TPE) plasmapheresis re-
duces the concentration of pathology-related contents in 
plasma. TPE has been used in AD [384] and may benefit 
patients by an entirely different mechanism, potentially 
opening a new avenue for future research [385]. A phase 
2b/3 Alzheimer's Management by Albumin Replacement 
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Table 5. Immunization of Tau or antigenic peptides. 

Vaccine Target Animal Model Clinical Trial Effect(s) References 

AAD vac1 Tau phosphorylation Yes 

Yes 
NCT02031198 
NCT02579252 
NCT01850238 

Lower hippocampal atrophy  
(less cognitive decline) [349-354] 

Others Tau phosphorylation/aggregates Yes No Unknown [355] 

 
Table 6. Monoclonal antibodies against α-synuclein explored in animal models of PD and one clinical trial. 

Vaccines Target Animal Model Clinical trial Effect(s) References 

Prasinezumab α-syn Yes Yes No effect 
NCT03100149 [356-357] 

Cinpanemab Aggregated α-syn Yes Yes  
NCT03318523 None [358-359] 

MEDI1341 α-syn in the brain Yes No Inhibits the spread of α-syn in mice [360] 

Lu AF82422 α-syn Yes No Unknown [361] 

Rec47 Oligomeric α-syn Yes No Unknown [362-365] 

ABBV-0805 Aggregated α-syn Yes No Decreases α-syn aggregates in mice 
brains [365-66] 

 
Table 7. The α-synuclein vaccines that have been tested. 

Vaccines Target Animal Model Clinical Trial Effect(s) References 

AFFITOPE®  
peptides α-syn epitopes Yes 

Yes (subcutaneous) 
NCT01885494  
NCT02267434 

Cognitive improvement [367] 

UB-312 Oligomeric and fibril protein Yes Yes (ongoing)  
NCT05634876 Unknown (still underway) [368-369] 

C-type lectin  
receptor vaccine α-syn Yes No Unknown (still underway) [370] 

DNA vaccine α-syn Yes No Not effective [371, 372] 

MultiTEP α-syn Yes No - [373] 

 
(AMBAR) study shows that TPE with albumin exchange 
may slow cognitive and functional decline in AD patients 
[385]. A significant improvement in quality of life was 
measured by a self-reported questionnaire among patients 
with mild AD from baseline to 14 months among the TPE-
treated groups compared with the control group. There are 
still several areas in this topic that require more research.  
 Among other strategies proposed is using small mole-
cules to target checkpoint receptors in neuroinflammatory 
diseases [386]. Also, the inhibition of the pathway IL-
17/TRAF6 as this pathway is involved in neurotoxicity 
[387]. Finally, the use of therapies to expand Treg cells seem 
to be important not only in MS but also in PD [388]. The 
development of new treatments is just beginning.  

CONCLUSION 

 Various schemes involving AD and PD have been used 
to control acute and/or chronic inflammatory responses to 
decrease the risk or slow the progression of neurodegenera-
tive diseases. In both diseases, there is still room for im-

provement. Several therapies for autoimmune diseases have 
been proven helpful in the onset or progression of NDs. Sev-
eral anticancer drugs may be beneficial, as in the case of 
methotrexate in rheumatoid arthritis. The critical issue is 
assessing the risk and diagnosing the condition in time to 
start with good therapeutic schemes involving balanced  
nutrition, supplementation, and physical and cognitive exer-
cises (https://www.alz.org/alzheimers-dementia/treatments/ 
alternative-treatments). Genetic counselling of families of 
patients with NDs may help identify those with higher genet-
ic risk and provide alternatives to delay disease onset.  

 Currently, safe therapeutic options involve cytokine in-
hibitors and other anti-inflammatories in patients with stable 
disease or typical progression. Monoclonal antibodies 
against βA must be closely monitored due to their adverse 
effect. 

 In patients with rapid progression, there is no primary 
option available. However, clinical trials should consider this 
group as more people develop NDs at younger ages.  

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here 

 

For perso
nal priva

te use only 

Not be distr
ibuted or uploaded to anyone or anyw

here



Inflammation, Autoimmunity and Neurodegenerative Diseases Current Neuropharmacology, XXXX, Vol. XX, No. XX    15 

 Reducing inflammation with an array of early-stage 
treatments is the most promising strategy to mitigate the de-
velopment of underlying AD and PD pathophysiology [356]. 
There is, however, room for improvement in pathological 
screening and the generation of new therapeutic compounds, 
as well as strategies and schemes that can benefit these high-
ly prevalent diseases. 

LIST OF ABBREVIATIONS 

AD = Alzheimer's Disease  
ADCC = Antibody-dependent Cell-mediated Cyto-

toxicity  
ALS = Amyotrophic Lateral Sclerosis  
anti-MAG = Anti-myelin-associated Glycoprotein  
APP = Amyloid Precursor Protein  
Aβ = Amyloid-beta  
BBB = Blood-brain Barrier  
BCG = Bacillus Calmette-guerin  
BSCB = Blood-spinal Cord Barrier  
C9orf72 = Chromosome 9 Open Reading Frame 72  
Cas-1 = Caspase 1  
CNS = Central Nervous System  
DAMPs = Damaged or Stressed Tissues  
FTLD = Friedreich Ataxia, Frontotemporal Lobu-

lar Degeneration 
FUS = Fused in Sarcoma  
GM-CSF = Granulocyte-macrophage Colony-stimu-

lating Factor  
HD = Huntington's Disease  
HMGB-1 = High Mobility Group Box Chromosomal 

Protein 1  
HSV1 = Herpes Simplex Virus 1  
IBD = Inflammatory Bowel Disease  
MDS-UPDRS = Movement Disorder Society-sponsored 

Revision of the Unified Parkinson's Dis-
ease Rating Scale  

MS = Multiple Sclerosis  
ND = Neurodegenerative Diseases  
NFTs = Neurofibrillary Tangles  
NSAID = Non Steroid Inflammatory Drug  
PD = Parkinson's Disease  
PRRs = Pattern-recognition Receptors 
PSEN = Presenilin 
RAGE = Advanced Glycation Endproducts Recep-

tors  
SCI = Spinal Cord Injury  
SMA = Spinal Muscular Atrophy  

SNP = Single Nucleotide Polymorphisms  
SOD1 = Superoxide Dismutase 1  
TBI = Traumatic Brain Injury  
TDP-53 = TAR DNA-binding Protein  
TLRs = Toll-like Receptors  
TPE = Therapeutic Plasma Exchange  
TRAIL = TNF-related Apoptosis-inducing Ligand 
α-syn = α-Synuclein  
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