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Abstract: We designed a concept of 3D-printed attachment with porous glass filter disks—SLIDE
(Sweat sampLIng DevicE) for easy sampling of apocrine sweat. By applying advanced mass spectrom-
etry coupled with the liquid chromatography technique, the complex lipid profiles were measured to
evaluate the reproducibility and robustness of this novel approach. Moreover, our in-depth statistical
evaluation of the data provided an insight into the potential use of apocrine sweat as a novel and
diagnostically relevant biofluid for clinical analyses. Data transformation using probabilistic quotient
normalization (PQN) significantly improved the analytical characteristics and overcame the ‘sample
dilution issue’ of the sampling. The lipidomic content of apocrine sweat from healthy subjects was
described in terms of identification and quantitation. A total of 240 lipids across 15 classes were
identified. The lipid concentrations varied from 10−10 to 10−4 mol/L. The most numerous class
of lipids were ceramides (n = 61), while the free fatty acids were the most abundant ones (average
concentrations of 10−5 mol/L). The main advantages of apocrine sweat microsampling include:
(a) the non-invasiveness of the procedure and (b) the unique feature of apocrine sweat, reflecting
metabolome and lipidome of the intracellular space and plasmatic membranes. The SLIDE appli-
cation as a sampling technique of apocrine sweat brings a promising alternative, including various
possibilities in modern clinical practice.

Keywords: apocrine sweat; lipidomics; mass spectrometry; microsampling; profiling

1. Introduction

The entire sweat gland system represents 1.6–5 million apocrine and eccrine glands
distributed throughout the body surface [1] as an integral part of one of the largest organs—
the skin [2]. The eccrine sweat glands are the most numerous, spread over almost the entire
surface of the body. They are responsible for the largest volume of the sweat secretion,
which fulfills the thermoregulatory function of the body [3]. The eccrine glands develop
until the age of 2–3 years—when they become active, and their quantity stays constant
throughout life. The development of apocrine sweat glands begins at birth, but they become
active later during the stimulation by androgens or estrogens—associated with puberty.
After a period of sexual maturity, their activity gradually decreases with age. The main
concentration of apocrine glands is on the hairy parts of the body (in the axillae, mammary
areolae, and periumbilical and genital areas). The armpit contains the most significant
number of apocrine glands on the entire surface of human skin [2]. Although a mixed-type
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apoeccrine gland has been described [4], other authors have not confirmed its presence [5].
Therefore, only two types of sweat glands are usually mentioned in the literature.

To characterize sweat glands by their secretory mechanism, they can be divided into
three main groups: holocrine, merocrine (also called eccrine) and apocrine (Figure 1).
(1) The holocrine secretion is defined as a complete disintegration of a cell into a secretion
(Figure 1c), which is typical for sebaceous glands. They are also commonly found near
the hair follicles and other sweat glands. However, they cannot be considered sweat
glands, as they form the lipid-rich secretion by breaking its whole cell down. On the other
hand, the eccrine and apocrine glands secrete in the true sense of the word, and do not
undergo complete disintegration. (2) Merocrine secretion is based on the formation of
vacuoles from Golgi’s apparatus and the cell membrane. Formed vacuoles and secretory
granules, containing mainly water-soluble metabolites, ions and proteins, leave the cell
via the process of exocytosis without disrupting it (Figure 1b). (3) Apocrine secretion is
characterized by separating a part of the cell containing cytoplasm and cell membrane
(Figure 1a). Unlike holocrine secretion, which occurs after death and the breakdown of
the entire cell, apocrine secretion is formed from a living cell. It delivers part of the cell’s
cytoplasm and cell membrane, containing intracellular fragments, to the outlet of the
apocrine gland [6]. The released part of the cell grows back, and the cell continues to
function. Therefore, its utility lies in the advantage of apocrine secretion that reflects the
intracellular space’s metabolic ratios. On the other hand, routine clinical materials such as
urine or blood plasma (or serum) mainly reflect the metabolic situation in the extracellular
space, and hence only partially and indirectly the intracellular and membrane metabolic
processes [6]. Although the mechanism of apocrine sweat formation and function has been
studied for a long time, it has not yet been completely elucidated [7].
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Figure 1. Schematic visualization of the three main types of sweat secretion (the design was adopted 
from Graphics RF, www.vecteezy.com, accessed on 1 July 2021). The general epithelial cell (with 
apical membrane) was chosen for the demonstration of: (a) merocrine, (b) apocrine and (c) holocrine 
secretion (a more detailed description of the mechanisms is provided in the introduction). 

The easier acquisition of eccrine sweat, which can be supported thermally or by phys-
ical activity, led to its better chemical characterization than apocrine sweat. Still, due to 
compositional similarities, both will be discussed together. The sweat consists of three 
main parts: (1) water which makes up the majority of sweat (almost 99%); (2) ions—Na+, 
Cl−, Ca2+, K+, Mg2+, PO43−, NH4+ and others, including ionic species, and (3) organic mole-
cules—amino acids, hydroxy/keto acids, free fatty acids, saccharides, urea, creatinine, uric 
acid, vitamins, volatile compounds and intact/metabolized exogenous chemicals and 
pharmaceuticals [8]. Sweat is also often attributed to the function of removing metabolic 

Figure 1. Schematic visualization of the three main types of sweat secretion (the design was adopted
from Graphics RF, www.vecteezy.com, accessed on 1 July 2021). The general epithelial cell (with
apical membrane) was chosen for the demonstration of: (a) merocrine, (b) apocrine and (c) holocrine
secretion (a more detailed description of the mechanisms is provided in the introduction).

The easier acquisition of eccrine sweat, which can be supported thermally or by
physical activity, led to its better chemical characterization than apocrine sweat. Still, due
to compositional similarities, both will be discussed together. The sweat consists of three
main parts: (1) water which makes up the majority of sweat (almost 99%); (2) ions—Na+,
Cl−, Ca2+, K+, Mg2+, PO4

3−, NH4
+ and others, including ionic species, and (3) organic

molecules—amino acids, hydroxy/keto acids, free fatty acids, saccharides, urea, creatinine,
uric acid, vitamins, volatile compounds and intact/metabolized exogenous chemicals and
pharmaceuticals [8]. Sweat is also often attributed to the function of removing metabolic
wastes through perspiration, but so far, this function seems to be relatively negligible
and mostly reserved for the kidneys [9]. However, it appears that various exogenous
substances and toxins such as pharmaceuticals [10], drugs [11], toxic metals [12] or other
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organic substances [13] are transferred into a sweat (and the concentrations in sweat are
often higher than that of blood and/or urine), which could be used for monitoring or
screening purposes.

Additionally, apocrine sweat represents the chemical nature of body odor, caused
by the microbial (mainly the Corynebacterium genus) transformation of steroid molecules,
volatile and other organic fatty acids and lipids secreted on the skin surface by sweat
glands [14]. This makes apocrine sweat a sensitive indicator for specific odor modulat-
ing substances, e.g., in some spices, and it is also possible to observe these compounds
metabolically transformed [15]. To clarify the composition and origin of the apocrine
secretion (not only sweat but also, for example, saliva, tears, or milk), various proteomic
analyses were performed, describing cytoskeletal, membranous, microsomal, ribosomal,
mitochondrial, and even, nuclear and nucleolar proteins in these biofluids [6,16]. In terms
of similarity of the proteomic composition of biofluids produced by apocrine glands (milk,
sweat, tears, cerumen, saliva and cerebrospinal fluid), apocrine fluids contain between
30 to 65% identical proteins regardless of their anatomical origin [6]. Furthermore, the
proteomes of all the human apocrine fluids compared to plasma or serum revealed that
38 (cerebrospinal fluid) to 91% (milk) of the entries were identical to plasma proteins [17].
This fact points to a link between the apocrine secretion (on the surface of the body) and
the plasma, representing the situation in the blood circulation.

The sampling of apocrine sweat possesses a challenge as the secretion volume is very
small, equivalent to a few microliters in one sample taken [18]. Nevertheless, under certain
circumstances (heat, exercise, influence of pain, topical application), apocrine sweat is
diluted by eccrine sweat. Among other properties, apocrine sweat differs from eccrine in
its pH. Apocrine sweat (pH 5.0–6.5) has an average pH approximately 0.5 units higher than
eccrine sweat (pH 4.0–6.0). Using the pH value, the ratio between apocrine and eccrine
sweat in the sample can be approximately estimated [18]. Another technique to distinguish
between the two types of sweat is fluorescence under ultraviolet light, as only apocrine
sweat shows fluorescence [18]. A reliable way to collect apocrine sweat, which is not diluted
by eccrine sweat, is to expel the contents of the apocrine glands using external compression,
vacuum or capillary forces [4,18]. These techniques produce extra apocrine sweat without
significant contamination of the eccrine component (if the subject’s physiology is not
further influenced by heat and/or exercise). A major issue in the collection of apocrine
sweat from armpit apocrine glands is the frequent use of antiperspirants (which leads to
obstruction of the apocrine gland outlets, as well as damage to the apocrine gland itself)
and difficult reproducibility of sampling (which is caused by an individual amount of
secretion and a non-specific volume of the sample taken) [19].

Future trends in clinical diagnostics are moving toward small sample volumes, high
sensitivity of analytical methods, non-invasive collection techniques and a shift toward
alternative biofluids. Although apocrine sweat is not yet used as a routine clinical material,
it offers potential applications in screening (drugs, pharmaceuticals), monitoring (diseases,
therapeutic drugs) or diagnostics [20,21]. For clinical applications, apocrine sweat has the
following advantages and significance:

1. It is a secretion that reflects the contents of the cellular cytoplasm (including cellular
fragments).

2. It reflects the components contained in the cell membrane of apocrine gland secre-
tory cells.

3. The components correspond to the cytoplasm composition and the cell membrane of
a living cell (as opposed to a holocrine secretion, which is composed of the remnants
of dead cells).

4. The lipid nature of apocrine secretion may be used in the future alongside diagnos-
tic targets to identify/quantify lipid xenobiotics, lipophilic pharmaceuticals, and
lipophilic narcotic drugs.

Apocrine sweat is still an incompletely studied biological fluid in metabolic and lipid
composition, as comprehensive studies are lacking. The future use of apocrine sweat in
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clinical practice will become apparent when more studies comprehensively characterize
this material. However, it requires the availability of highly sensitive microscale analytical
techniques as only a few microliters of a sample can be acquired. The current study
aimed to develop a robust and straightforward apocrine sweat sampling technique and
verify the reproducibility of such a procedure. The sampling technique was evaluated
by determining the lipidomic profile in healthy subjects following a standard sampling
protocol. Subsequently, the data obtained were statistically evaluated further to understand
the variability and behavior of apocrine sweat.

2. Results
2.1. Apocrine Sweat Microsampling Technique

SLIDE consists of a commercially available porous glass filter disk and a custom
3D-printed attachment (Figure 2a). These main parts are assembled together as shown
in Figure 2c, where the 3D-printed attachment serves as a handle and the porous glass
filter disk is used to directly swipe the desired part of the skin of the armpit (for further
explanation of the sampling technique see Section 4.2).
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Figure 2. SLIDE—sweat sampling device consisting of a 3D-printed attachment, porous glass
filter disk, and a plastic tube with a cap. 3D model of adapter (a), deconstructed parts (b), finally
composed (c).

In practical experience, the sampling procedure proved to be noninvasive, painless
and easy to perform (approximately 5 min, including informing the participant and the
collection itself). Furthermore, volunteers did not experience any discomfort, such as
dermatographic urticaria or skin irritation from the 80% isopropanol solution. In this
regard, the similarity of this solution to a widely used preinjection alcohol swab should be
mentioned [22]. Immediately after sampling the volunteers were able to commence their
standard daily activities.

2.2. Pseudotargeted Lipidomic Analysis

The pseudotargeted approach consists of calculating ion pairs (multiple reaction
monitoring transitions—MRM) corresponding to theoretical lipids in lipid classes possi-
bly present in the sample. The selection of relevant MRM transitions is carried out first.
During the optimization step, three analytical methods (two in positive and one in neg-
ative ion mode) consisting of approximately 3800 different MRM transitions were used
to adjust the final lipidomic method. Based on the analysis of quality control samples
(QC, criteria specified in Section 4.5), the final list of 240 detected lipids and the corre-
sponding MRM transitions was created to measure all samples (Supplementary File 2,
Sheet 2). The identified lipids are belonging to 15 lipid classes and subclasses as follows:
cholesteryl esters (CE), ceramides (Cer), hexosylceramides (HexCer); lysophosphatidyl-
cholines (LPC); phosphatidylcholines (PC); plasmalogen phosphatidylcholines (PCO);
lysophosphatidylethanolamines (LPE); phosphatidylethanolamines (PE); plasmalogen
phosphatidylethanolamines (PEO); phosphatidylinositols (PI); phosphatidylserines (PS);
sphingomyelins (SM); diacylglycerols (DG); triacylglycerols (TG) and free fatty acids (FA).
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Expanded stacked chromatograms showing each lipid class separately in more detail are
provided in the Supplementary Figure S7.

To test the analytical specificity and robustness to interferences of the final lipidomic
method, the extracts from the 3D-filament were analyzed. After incubation of the plastic
attachment in 80% isopropanol solution, the interferences of contaminating substances
were marginal. Only one peak corresponding to MRM of Cer d20:1/18:0 was observed
in the plastic extract (Supplementary Figures S8 and S9). Several FA species were also
detected in the process blanks (FA16:0 and FA18:0), as common residues of organic solvents.
A post-column infusion experiment was carried out to ensure that no significant matrix
effects occur. The total ion chromatogram (TIC of isotopically labeled standards) baseline
oscillated at intensities of 2 × 107 for both QC sample and process blank in the positive
ion mode (Supplementary Figure S4), and most of the matrix-induced deviations to higher
intensities showed narrow peaks and occurred in the elution periods between the retention
windows of individual lipid classes. The injection volume experiment showed a linear
response (R2 > 0.95) for the majority of all lipids (206/240, Supplementary Figure S3).

When comparing the extracted ion chromatograms (in MRM mode), significant differ-
ences in lipid profiles were found not only in the intensities of the detected lipids (y-axis)
but moreover in their different compositions between individuals (Figure 3). Massive
changes are evident in the glycerophospholipid and sphingolipid regions of the chro-
matogram (Figure 3), indicating the high biological variability of this material. Therefore, a
sophisticated data processing strategy is required.
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2.3. Importance of Sweat Lipidome Data Transformation

To overcome an issue of different volumes of samples (no standardization available),
a data transformation based on partial quotient normalization combined with the natural
logarithm (lnPQN) was applied and compared with the commonly used natural logarithm
(ln). The lnPQN is based on the calculation of medians across the samples (observations)
and lipids (variables) and their relation to each lipid [23]. In recent years, the lnPQN
transformation has found its indispensable place in metabolomics/lipidomics experiments
and provides promising results for many sample types where other normalization methods
fail (more details are provided in Section 3.3) [24].

To evaluate the data transformation methods, univariate and multivariate statistical
methods were applied. For univariate statistics, intra-individual variability (CVi), group
variability (CVg), and variability for quality control samples (CVqc) were calculated for
each lipid. A dramatic decrease to approximately half the CVi (67 vs. 36%) and CVg (112
vs. 72%) values were observed when using lnPQN compared to ln while keeping the same
CVqc (7.7 vs. 7.9%), (Figure 4, Supplementary Figure S10). This shows the importance of
using the lnPQN transformation to reduce variability either within or between individuals.
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Figure 4. Overview of the variability (CV, %) for 240 detected lipids after lnPQN (natural loga-
rithm with probabilistic quotient normalization) transformation. Quality control samples (QC),
intraindividual (CVi), and group variability (CVg). Black lines: medians.

Multivariate statistical approaches offer a unique view of the general behavior of
samples. Unsupervised hierarchical cluster analysis (HCA) and principal component
analysis (PCA) show similar trends as the results from univariate statistics. In HCA, the
clustering of only two individuals (participants C and I) can be seen in ln transformed data
compared to lnPQN transformed data where almost all individuals are grouped (except
participant D), (Figure 5, Supplementary Figure S11). Moreover, the y-axis representing the
importance of differences is more than two times higher in the ln transformed data.
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Figure 5. Hierarchical cluster analysis of lnPQN transformed data. Colors represent 10 individuals (A–J) who were sampled
from the left (L) and right (R) sides for 3 different days (1–3).

The score plot of PCA in Figure 6 projects all lipid variables describing the samples in
two dimensions. The grouping of samples based on an individual could be more clearly
observed in the case of lnPQN compared to ln (Figure 6, Supplementary Figure S12).
Explained variances of the PCA model according to scores 1 and 2 were 56.6/28.9% and
26.0/11.8%, respectively. The twice higher variance in the first score t [1] for ln transformed
data compared to lnPQN explains the significantly higher dispersion and variability of
the data. Additionally, the strong grouping of quality control samples placed close to
the center point (gray color) confirms the overall quality of the lipidomic experiment.
Participant I, whose samples lay farthest from the others on PCA, was on average 60 years
older than the other subjects in our study. This indicates that age could be an important
factor reflecting changes in apocrine sweat composition, and additional studies with larger
cohorts (homogeneous categories by age and sex of participants) will be needed to precisely
describe and explain the impact of age.
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2.4. Intraindividual and Group Variability of Lipids

The variabilities of each lipid class were calculated. The summarized average vari-
abilities for detected lipid classes vary 26–64% and 51–119% for CVi and CVg (Figure 7),
respectively. The higher variability can be seen in groups with lower abundances e.g., in
PI or PS classes. Conversely, the lowest variabilities are present in highly abundant lipid
classes such as FA, TG, and Cer.
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Figure 7. Boxplots of intraindividual (CVi, red boxes) and group variability (CVg, blue boxes) for detected lipids di-
vided by lipid classes after application of lnPQN transformation. Boxes represent 1st and 3rd quartiles with centreline
as the median. Lipid classes are abbreviated according to: cholesteryl esters (CE); ceramides (Cer); hexosylceramides
(HexCer); lysophosphatidylcholines (LPC); phosphatidylcholines (PC); plasmalogen phosphatidylcholines (PCO); lysophos-
phatidylethanolamines (LPE); phosphatidylethanolamines (PE); plasmalogen phosphatidylethanolamines (PEO); phos-
phatidylinositols (PI); phosphatidylserines (PS); sphingomyelins (SM); diacylglycerols (DG); triacylglycerols (TG); free fatty
acids (FA). Numbers in parentheses represent the number of identified lipids in each class.

To visualize the distribution of CVi and CVg for all detected compounds, lipid net-
works were constructed in Cytoscape software where each lipid class forms a cluster, with
a description of the individual lipids assigned to it (Figures 8 and 9) [25]. Lipids were
annotated according to the generally accepted lipid nomenclature [26] and the level of
annotation (e.g., acyl-chain composition, or sn-1/sn-2 position) matched the resolving
possibilities of the analytical method (described in more detail in Section 4.5). In addition
to the trends observed in Figure 7, discrepancies within the classes were seen. In the TG
class, which showed low average variability of approximately 30% in the whole group,
only TGs of 54 carbons and 2–6 double bonds showed more than double CVi compared
to the rest of the class. Similarly, the CVg for a few Cer species almost doubled from the
mean class CVg (Figure 9). These deviations can be explained by the possible variability of
origin of lipids (apocrine, eccrine, sebaceous), but also, for example, by the concentration
or stability of these lipids.
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2.5. Quantitation of Lipid Classes

Concentrations of lipids in biological samples usually differ by many orders of magni-
tude. Similarly, in sweat extract a large dispersion of the concentration levels between and
within lipid classes can be observed. The most abundant FA, CE, and DG classes lie in the
median of 10−5 mol/L compared to low abundant LPE, LPC, PEO and PCO with a median
of 10−9 mol/L (Figure 10). Finally, the overall detectable dispersion of concentration levels
is more than five orders of magnitude (from 10−10 to 10−4 mol/L). Moreover, the numbers
of detected lipids significantly differed across the classes from only a few in the PI class up
to dozens in Cer and TG classes.
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Figure 10. Boxplots of sweat extract concentration levels for quantified lipids in classes after the
application of lnPQN transformation. Numbers in parentheses represent the number of identified
lipids in each class.

If the concentrations of all lipids in each class are summed, a large representation
of FA (83.8%) followed by DG (7.9%), CE (4.4%), TG (2.1%) can be observed (Figure 11a).
Sphingolipids (SP) and glycerophospholipids (GP) collectively represented 1.9% of the rest
of the lipids, and ceramides (1.3%) and sphingomyelins (0.2%) were making up a majority
of these subclasses (Figure 11b).
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2.6. Correlation of Lipids in Apocrine Sweat

To overview the relationships between lipid classes in sweat, Pearson’s linear cor-
relation was performed and the results visualized in a heatmap (Figure 12). Based on
an experimental setting (n = 60 samples), correlation coefficients 0.26 and higher were
calculated as statistically significant, where medium and strong correlations were higher
than 0.5 and 0.7, respectively. Systematic trends can be observed as lipids in one class
generally behave similarly compared to another lipid class (but interclass trends can be
also observed). For example, ceramides show a negative correlation with most other lipid
classes except free fatty acids to which they correlate positively, and triacylglycerols with
both positive and negative correlation regions on the heatmap. A positive correlation
among all glycerophospholipids can be observed except for the negatively correlated PEO
and PS classes.
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by lipid classes.

2.7. Armpit Side-Specific Differences

In addition to the basic description of the lipid composition of apocrine sweat, the
differences of sampling between the left and right armpits were studied. The visualiza-
tion of all lipids categorized by lipid classes was performed using Cytoscape software
(Figure 13). Finally, samples taken on the same day from each person were statistically
evaluated using paired t-test and fold-change. When Benjamini-Hochberg correction (false
discovery rate adjusted to 0.25) was applied, none of any of the lipids was evaluated as
statistically significant. Despite systematic trends of increased ceramides, diacylglycerols,
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and partly decreased selected glycerophospholipids (PC, PCO, PE, PEO) can be seen, the
relative changes are lower than 15% for the majority of lipids.
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and their size depends on the p-value (paired t-test). Labels in individual lipid nodes describe the numbers of carbons and
double bonds characterising the acyl-chain composition of the particular lipid.

3. Discussion
3.1. Novel Approach for Sweat Sampling

In the study presented here, we focused on characterizing apocrine sweat as a poten-
tially clinically relevant biofluid, from multiple points of view. First, we have developed
and described a simple, easy-to-use sampling technique, using a custom 3D-printed attach-
ment and a commercially available porous glass filter disk. This concept not only offers an
opportunity for other researchers and clinicians to adopt our technique for further studies,
but it also brings a unifying aspect to apocrine sweat sampling, as the 3D blueprint can be
easily shared and modified for further development. We have also described a standard-
ized protocol with recommendations for consistent sampling. The usage of antiperspirants
and other cosmetics with underarm application needs to be avoided before the sampling
of apocrine sweat as it can lead to obstruction of apocrine sweat glands [19]. Due to the
physiology of the human secretory glands, it is not possible to obtain pure apocrine sweat
because in the axillary region, in addition to the high density of apocrine glands, eccrine
glands and sebaceous glands (in the hair follicles) are also present [1]. It should also be
noted that participants’ physiology was not altered by heat or physical activity (stimulating
sweat production in other glands), and therefore an assumption was taken that the majority
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of sampled material is of apocrine gland origin and minor parts are of eccrine, sebaceous,
or even microbial sources. To avoid this contamination as much as possible, the armpit was
carefully cleaned with distilled water prior to the sampling. A perfectly adequate name for
the material studied in this work is therefore armpit sweat (the main component of which
is apocrine sweat). With defined and optimized the sampling technique, we proceeded to a
detailed description of the material itself.

3.2. Lipidomic Methodology

Lipidomic analysis is increasingly showing its potential in the field of clinical diagnos-
tics as well as offering unique insights into the biochemistry and biophysics of biological
fluids and tissues [27]. Apocrine sweat is an ideal material for lipidomic analysis as it
contains not only intracellular metabolites but also lipid bilayers, which are released by
apocrine glands [6]. The absolute quantitative LC-MS analysis of lipids can be achieved
only using HILIC separation, where all lipids are separated based on their polar head
groups and not the side chains. Such mechanism is providing identical ionization condi-
tions and matrix effects for each lipid class [28]. On the other hand, the complementary
reversed-phase mode (RP) provides separation based on acyl-chain length and number of
double bonds, which offers a resolution of isomeric lipids. Moreover, using lipid pattern
plots allows easy deciphering of misidentifications. Recently, it has been shown that RP
and HILIC-based LC-MS analyses of lipids yield equal quantitative results for many lipid
classes [29]. As our goal was to comprehensively describe the lipid composition of the
sampled sweat, as well as to quantify these lipids, the RPLC system was used. However, it
needs to be addressed that for absolute quantitation multiple lipid standards within each
lipid class would have to be used.

3.3. Data Processing Solution to the Problem of the Variability

Descriptive statistical evaluation of the studied material is necessary for its use in
clinical applications. As sweat had already been shown to be a highly variable material
as regards water content and concentration of ions [1,20,30] and considering the fact that
our approach did not account for differences in the volume of the sample, a robust normal-
ization strategy had to be chosen. For the analysis of urine, the creatinine concentration
is commonly used as a normalization parameter of the dilution, but it still does not solve
all problems when performing metabolomic urinary analysis [31]. The Probabilistic Quo-
tient normalization (PQN) offers a solution to the dilution-induced sample inconsistencies
as it transforms the metabolomics data according to an overall estimation of the most
probable dilution [23]. Although this normalization was first applied to NMR data, it is
now becoming increasingly popular in metabolomics and lipidomics as it outperforms
other normalization strategies [24]. Our goal was to obtain data of as low non-biologically
induced variability as possible while at the same time preserving information about indi-
vidual biological variability. Finally, the application of lnPQN transformation was able to
reduce CVi and CVg to approximately half that using natural logarithm alone, while the
variability of QC samples remained unchanged, indicating the selectivity of the lnPQN
approach in avoiding an overestimated normalization of the data.

The general principle and usefulness of the lnPQN were additionally proven by
multivariate statistical analysis, particularly in the hierarchical cluster analysis, where 9 out
of 10 individual participants were clustered, while an effect of the different day or side of
sampling was not seen. Further insight into biological variability was offered by the results
from PCA, in which all individual samples clustered close together, but 3 participants (C, I,
F) lay further away from all other samples. This outcome highlights one imperfection of
our study, namely the uneven representation of ages in our small cohort. These results are
also in compliance with larger cohort studies investigating correlations between plasma
lipids, age, and sex of participants, where intra-/interclass trends in lipids showed a good
correlation with age [32].
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3.4. Description of the Sweat Lipidome

In terms of the lipid concentration in apocrine sweat, FA dominated, followed by glyc-
erolipids (TG and DG) and then CE and phospholipids (SP and GP). Takemura et al. [33]
discovered that the technique of sweat collection significantly affects its composition, and
that the FA content of physically scraped sweat can be up to 100-fold higher than that
of clean sweat (collected passively without scraping). As far as we know this is the first
work comprehensively describing the apocrine sweat lipidome including estimation of
lipid concentrations. We compared our results with those from other studies of sweat from
various origins. Peter et al. [34] subjected mechanically collected eccrine sweat to quan-
titative FA analysis and found that FA concentration oscillated between 0.1–5.47 µg/mL,
which is approximately one order of magnitude below that in our measurements (in which
FA ranged from 0.03–44.4 µg/mL). The difference can be explained by the different bi-
ological origin (eccrine gland) of the sweat in the aforementioned study and the higher
extraction efficiency of our sampling procedure (due to pre-soaking the disk in 80% IPA).
The high concentration of lipids (specifically FA) is consistent with the assumption that
apocrine sweat is a lipid-rich material and, unlike eccrine sweat, cannot be completely
evaporated [18]. As the release of apocrine sweat is promoted by physical stimulation, we
chose the scraping approach for its collection, which can lead to an increased content of
FA in the final sample, similarly to the presence of sterols and ceramides of sebaceous and
epidermal origin. The heterogeneous lipid composition of the sample was also reflected
in the number of individual lipids (in parentheses), where Cer (n = 61) were the most
represented, followed by TG (n = 37), SM (n = 23), PC (n = 20), DG (n = 17) and FA (n = 17).
At first glance the large number of ceramides of structurally heterogeneous character
(various long-chain bases: 16:0, 16:1, 18:0, 18:1, 20:1) may be striking; however, they are
found abundantly as constituents of the cutaneous lipidome, where their function (water
permeability barrier of the skin) and their role in pathobiochemical processes (e.g., atopic
dermatitis or psoriasis caused by disruption of the permeability function or inflammatory
disbalance of lipids in the epidermis) have been well documented [35–37].

To understand the biochemistry and biological behavior of a particular material, it
is helpful to focus on the trends within and between groups of studied biomolecules in
a particular biofluid or tissue. By constructing a correlation map, we could easily trace
the relationship trends between lipid classes. We could also observe that one lipid class
generally behaves in a consistent manner compared to another class, which is commonly
found in studies of plasma lipidome [38]. Glycerolipids (TG and DG) in apocrine sweat
did not show a similar correlation pattern and were frequently showing opposite trends
compared to each other. In contrast, in plasma these classes usually correlate in a similar
pattern together [39]. Interestingly, all glycerophospholipids showed similar trends in
correlations between and within lipid classes (except for the correlation of PS and PI to
PEO). On the other hand, in common with other researchers, we have also found correlation
trends in the classes themselves and in some cases even individual lipids with opposite
behavior to the rest of the class (indicating different origin, function, or regulation) [39].

To fully describe the studied material, differences between the sides of sampling were
also evaluated. Although systematic trends in lipid class levels were observed between
the left and right sides of sampling, these changes were considered nonsignificant after
the application of p-value correction (Benjamini-Hochberg). Furthermore, since these
differences for the majority of lipids were only up to +/−15%, this contribution was minor
compared to the interindividual variability of individual lipid classes (which are mostly
greater than 50%). On the other hand, these differences could be of significant importance
for diseases affecting only one of an organ pair (e.g., breast cancer), or they could also
reflect the physiological dominance of the right or left hand and/or lymph nodes [40].
However, further studies will be needed to clarify these hypotheses.
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3.5. Future Development

The results presented above show the potential of apocrine sweat sampling and
its analysis by advanced mass spectrometry coupled with liquid chromatography, as a
promising noninvasive alternative to established methods in routine clinical analysis. Based
on the results of our research and also from other studies, it is likely that new unsuspected
applications for various microsampling techniques will be emerging for both diagnostic
and therapeutic purposes [41]. Given the large number of different techniques already
described for the collection of apocrine sweat (which usually involve stimulation by heat,
physical activity, pain, or the intradermal injection of adrenaline), it would be useful to
compare them with each other and with the SLIDE technique in the following studies.
Large-scale studies will be necessary to define the influence of age, gender, BMI, and other
factors on the lipidome of apocrine sweat. Due to the low cost of the sampling method
itself, the potential future application can be also seen in screening programs. This study
was conducted to improve characterization of the apocrine sweat lipidome, as other pilot
experiments have already shown the usefulness of sweat analysis for (1) drug screening [11],
(2) detection of early epidermal immunomodulation disruption in atopic dermatitis [36],
(3) glucose monitoring in diabetic patients [42] and (4) detection and measurement of
pharmaceuticals [10]. This work was carried out because a reliable sampling technique and
analysis of the composition of apocrine sweat in healthy individuals is a necessary basis
for the subsequent use of this biofluid in modern clinical diagnostics.

4. Materials and Methods
4.1. Chemicals and Reagents

Acetonitrile (ACN), isopropanol (IPA), water, and ammonium acetate (all LC/MS
grade) were purchased from Sigma-Aldrich (St. Louis, MO, USA). SPLASH® LIPIDOMIX®

Mass Spec Standard mixture and ceramide (d18:1-d7/15:0) were purchased from Avanti Po-
lar Lipids (Alabaster, AL, USA). Arachidonic acid-d8 was acquired from Cayman Chemical
Company (Ann Arbor, MI, USA).

4.2. D-Printed Attachment

The attachment was constructed in 3D Builder (version 18.0.1931.0, Microsoft Cor-
poration, Redmond, WA, USA). The external dimensions of the attachment were 41 mm
in length and 14 mm in radius (Figure 2). A 1.75 mm diameter, sapphire-colored PLA
filament (Smart Materials 3D, Alcalá la Real, Spain) was used for printing. The attachment
was printed on DeltiX 3D (Trilab, Brno, Czech Republic) under standard conditions typical
for PLA filaments (extruder and bed temperatures: 210/55 ◦C; extrusion width: 0.4 mm;
layer thickness: 0.2 mm; speed: fast). The model in 3mf and stl format is available in the
supplementary files.

4.3. Sampling Technique

Apocrine sweat was collected in gloves using a custom 3D-printed attachment with
porous glass filter disk (porosity S1, 10 mm diameter, Figure 1) purchased from Winzer
Laborglastechnik (Wertheim, Germany). We have called this system SLIDE, which is an
acronym for Sweat sampLIng DevicE, but it also represents the motion that is used for
sampling—sliding on the surface of the skin of the armpit. Before extraction, the disk was
cleaned with 80% isopropanol solution in a sonication bath for 30 min and then dried in
air afterwards. After this procedure, the disc was ready to use for sweat sampling. After
assembly, the glass filter projects out approximately 2 mm from the attachment.

The day before the collection, the participants shaved both axillae (dry or wet shaving
procedure according to their habits) and afterwards they were not allowed to use any
cosmetic products with underarm application until after the sweat collection procedure.
Washing with soap or body shampoo when showering or bathing the evening before the
collection was allowed. The next morning, the axillary apocrine sweat was collected as
follows: one hour prior to sampling, the armpits were cleaned with distilled water and
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lightly wiped with a paper towel to remove surface dirt, microbial debris, dead cells and
sebum, then the filter disk was placed on the attachment and it was carefully immersed in
80% isopropanol (so that it just touched the surface). The axillary apocrine sweat was then
removed by passing the disk over the surface of the skin of the shaved part of the axilla,
where the apocrine sweat glands open into the hair follicles. Apocrine sweat was expressed
by slight pressure on the disk and immediately drawn by capillary forces into the interior
of the disk. The extraction was performed bilaterally, with an estimated extraction time of
approximately half a minute per axilla. One disk was always used for sampling only one
side (left or right axilla). After the collection, the disk was pushed out of the attachment
with tweezers (from the other side of the attachment) and transferred to a premarked tube,
which was then immediately frozen at −80 ◦C until further sample preparation.

To test the reproducibility of this novel sampling approach, apocrine sweat was
collected from 10 healthy individuals (A–J) in three consecutive sessions (1–3) from both
the left (L) and right (R) sides providing six samples from each individual and a total of
60 samples (further description is provided in Supplementary Table S1).

4.4. Sample Preparation

Sweat samples were extracted from the porous glass filter disk by one-step isopropanol
(IPA) extraction in random order. First, 400 µL of 80% IPA was added to the tube containing
the disk and the mixture was sonicated for 10 min and incubated for 1 h at room temper-
ature on a shaker. The extracts (200 µL) were transferred to Eppendorf tubes (1.5 mL),
centrifuged (4 ◦C, 10,000× g, 10 min), and finally pipetted to glass vials for LC/MS analysis.
An aliquot of 15 µL was taken and pooled from each extracted sample to make the final
quality control (QC) sample. To eliminate potential systematic errors, QC were analyzed
every 5th sample (for instrument stability control). Both orders of sample preparation and
analysis were strictly randomized (for batch layout see Supplementary Table S5).

4.5. Pseudotargeted Lipidomic Analysis

The method for targeted lipidomic analysis, using liquid chromatography coupled to
mass spectrometry, was adopted from Xuan et al. [43]. The LC separation was performed on
ExionLC™ System (AB Sciex LLC, Framingham, MA, USA), the data were acquired using
QTRAP® 6500+ mass spectrometer (AB Sciex LLC, Framingham, MA, USA) and the system
was controlled by Analyst software (version 1.6.2, AB Sciex LLC, Framingham, MA, USA).
A reversed-phase BEH C8 (2.1 mm, 100 mm, 1.7 µm) column (Waters corporation, Milford,
MA, USA) was used for the chromatographic separation. Mobile phase A consisted of
ACN: H2O (6:4, v/v), the mobile phase B was IPA: ACN (9:1, v/v), and both contained 10
mM ammonium acetate. The flow rate was 0.35 mL/min and the column was tempered
at 55 ◦C. The elution gradient was set as follows: commencement with 32% B for 1.5 min;
linear increase to 85% B at 15.5 min; increase to 97% B at 15.6 min maintained for 2.4 min.
The gradient then decreased to the initial composition of 32% B at 18.1 min and this ratio
was maintained for 1.9 min for column equilibration.

The parameters of the ion source and gases of the mass spectrometer were set as
follows: ion spray voltage +4500 V and −4500 V; curtain gas, 40 psi; ion source gases 1 and
2, 60 and 50 psi respectively; source temperature 400 ◦C. Scheduled MRM mode with a
window of 2 min was applied for the data acquisition. Positive and negative ionization
of compounds in one analysis was performed, using the polarity-switching feature of the
used mass analyzer.

The adduct and fragmentation parameters (Supplementary Table S2) as well as the
processing workflow were kept the same as in the original method. There was manual
filtering of all theoretical MRM transitions (3800 ion pairs in two positive and one negative
methods) based on multiple QC sample measurements (only peaks above three times
the signal-to-noise ratio were selected), and correct identification was further verified
by lipid pattern plots (plotted via the R script created by Drotleff et al. [44] and shown
on Supplementary Figure S1). QC samples were used for injection volume optimization
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(Supplementary Figure S3), relevant MRM selection (the MRM parameters for 240 selected
lipids are provided in Supplementary File 2, Sheet 2), and instrument stability measure-
ment (Supplementary Figure S5), and they were also used for locally estimated scatterplot
smoothing (LOESS; Supplementary Figure S6). Injection volume experiments were mea-
sured to verify a linear response for all analytes by injecting 0.5, 1, 1.5, 2, and 2.5 µL of a
QC sample (Supplementary Figure S3). Post-column injection of 100× diluted SPLASH®

LIPIDOMIX® Mass Spec Standard mixture (with the syringe flow rate set at 3 µL/min)
simultaneously during the analysis of QC samples was carried out for the evaluation of
matrix effects. Non-scheduled MRM transitions corresponding to each deuterated standard
in the mixture were measured to investigate ion suppression or ion enhancement across
the time of analysis (8 in positive and 5 in negative mode and the dwell time was set to
30 ms) (Supplementary Figure S4). To uncover potential interfering contaminants from the
3D-filament, 30s and 5 min extractions of this material were performed in 80% IPA (the top
of the attachment was dipped in 1 mL of the extraction solution in a 5 mL glass beaker on a
shaker) (Supplementary Figures S9 and S10).

4.6. Data Treatment and Statistical Analysis

Data from the lipidomic analysis were integrated by SCIEX OS software (version 1.6.1,
AB Sciex LLC, Framingham, MA, USA) and processed in the R program (version 4.0.3, R
Foundation for Statistical Computing, Vienna, Austria) using the Metabol package [45].
Peak areas of analytes present in the process blank sample were subtracted from the areas
in samples before further processing. Due to the variability of this biological material
(discussed in Section 2.3), analyte peak areas in the blank were higher than in samples in
a few cases. If this situation occurred in more than five samples, the whole analyte was
discarded, otherwise values were set to half of a minimum value of a given analyte as
described previously [46]. The QC-based, locally estimated smoothing signal correction
(LOESS) was applied to the dataset, and coefficients of variation (CV) for all individual
analytes were calculated from the QC samples. Metabolites with a CV higher than 30%
were excluded from further data processing.

Data were statistically evaluated in GraphPad (version 9.0, San Diego, CA, USA) and
SIMCA software (version 15.0, Umetrics, Umeå, Sweden). Ln and lnPQN transformation,
Pareto scaling, and mean centring were applied to the final dataset. Data were evaluated by
both multivariate (principal component analysis—PCA, and hierarchical cluster analysis—
HCA) and univariate (t-test, box plots, violin plots) methods. The p-value was calculated
by parametric t-test. The fold-change value was expressed as log two of the difference of
medians of the given parameter of comparison. The Cytoscape program (version 3.8.2,
https://www.cytoscape.org/, accessed on 1 July 2021) was used for global visualization of
changes occurring in lipid profiles [25]. Each of the detected compounds is represented
by a circle and significant metabolites/lipids are highlighted. The size of the circle rep-
resents the p-value (in −log value) and the depth of color is based on the fold-change
(shades of red/blue represent an increase/decrease between two tested groups) or the % of
relative variability.

4.7. Quantitative Evaluation of Lipid Profiles

A matrix-matched calibration series (created by dilution of the standard mixture by
the QC sample) was prepared using isotopically labeled SPLASH® LIPIDOMIX® Mass
Spec Standard mixture with the addition of two more deuterated standards: arachidonic
acid (d8) and ceramide (d18:1d7/15:0). A 6-point calibration curve was plotted for each
standard representing the whole lipid class and the corresponding equations were used
for calculating concentrations (Supplementary Tables S3 and S4). Values that were out
of the range of the calibration curve were ignored for further processing. An isotopic
correction factor for type I error was calculated and used to adjust the difference of 13C-
abundance [28], while type II error was not considered to be isotopologues did not coelute
in our RPLC separation setup (Supplementary Figures S1 and S2).

https://www.cytoscape.org/
https://www.cytoscape.org/
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