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Abstract: Polyphenols, secondary metabolites of plants, exhibit different anti-cancer and cytoprotec-
tive properties such as anti-radical, anti-angiogenic, anti-inflammation, or cardioprotective. Some of
these activities could be linked to modulation of miRNAs expression. MiRNAs play an important role
in posttranscriptional regulation of their target genes that could be important within cell signalling
or preservation of cell homeostasis, e.g., cell survival/apoptosis. We evaluated the influence of a
non-toxic concentration of taxifolin and quercetin on the expression of majority human miRNAs via
Affymetrix GeneChip™ miRNA 3.0 Array. For the evaluation we used two cell models corresponding
to liver tissue, Hep G2 and primary human hepatocytes. The array analysis identified four miRNAs,
miR-153, miR-204, miR-211, and miR-377-3p, with reduced expression after taxifolin treatment. All
of these miRNAs are linked to modulation of ZEB2 expression in various models. Indeed, ZEB2
protein displayed upregulation after taxifolin treatment in a dose dependent manner. However, the
modulation did not lead to epithelial mesenchymal transition. Our data show that taxifolin inhibits
Akt phosphorylation, thereby diminishing ZEB2 signalling that could trigger carcinogenesis. We
conclude that biological activity of taxifolin may have ambiguous or even contradictory outcomes
because of non-specific effect on the cell.

Keywords: polyphenols; Affymetrix GeneChip™ miRNA 3.0 Array; Hep G2 cells; primary cultures
of human hepatocytes; ZEB2

1. Introduction

Polyphenols are generally secondary metabolites of plants where they play different
roles such as in protection against oxidative stress, infection or UV-light [1]. These natural
compounds are abundant in fruits, vegetables, plant derived beverages, etc., and thus
form an important part of the human diet. Average consumption of polyphenols can
exceed 1 g per day [2,3]. Their positive effects were demonstrated by many in vitro and
in vivo experiments [4,5]. The most often discussed effect is antioxidant activity [6]. Other
interesting effects include anti-microbial, anti-inflammatory, anti-cancer, or cardioprotective
properties [6–9]. Some authors even claim that the basis of biological effects of polyphenols
is modulation of cell signalling rather than anti-oxidant properties [10]. During the past
several years many studies have described the ability of polyphenols and other natural
compounds to modulate microRNA (miRNA) expression [10–13].

MiRNA was first described by Lee et al. [14]. While working with C. elegans the
authors discovered an unusual RNA molecule encoded by gene lin-4 that has the ability
to modify expression of lin-14 gene product. Gradually 1982 miRNA precursors were
described (according to miRBase 22 [15]). Interestingly, the effects of miRNA are quite a
complex mosaic because one miRNA molecule is capable of modulating the expression of
many protein targets, while several molecules of miRNA can modulate the same protein
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target [16,17]. Recent articles discuss a high proportion of miRNAs as tumor suppressors or
oncogenes depending on their rate of expression and function of their target proteins [18].
Sometimes a miRNA can be designated as tumor suppressor and oncogene at the same
time within different cell types. In other words, the role of these specimens/molecules
could be apparently conflicting as is the case of the miR-29b family [19,20].

ZEB2 protein, also known as Zinc finger E-box-binding homeobox 2 or SIP1, is a
transcription factor [21,22]. It plays an important role in epithelial/mesenchymal transition
(EMT). EMT is a complicated process regulated by several transcription factors such as
ZEB, Snail or Twist, and epigenetics [23]. This phenomenon appears usually in later stages
of cancer development and is often linked to more aggressive malignancies with high
migration potential [24]. The transition is characterized by divergent expression of multiple
integral proteins, such as vimentin upregulation or E-cadherin downregulation [22,25]. On
the other hand, EMT is also part of the normal development of the organism, especially
during embryonic development or wound healing [26]. Moreover, there are many miR-
NAs that directly regulate ZEB2 expression, miR-30a, miR-141, and miR-335 to name a
few [27–29].

miRNAs are important molecules in modulation of protein expression and could be
affected by polyphenols. Hence, we decided to test the possible effect of taxifolin and
quercetin, two fairly abundant polyphenols of the human diet, in hepatocyte models.
Quercetin was chosen as a major representative of the flavonoid group and taxifolin is its
reduced derivative. We hypothesized that miRNA expression altered by polyphenols may
be beneficial for different types of cells and tissues or result in modified behaviour, which
may correspond with protective properties.

2. Results
2.1. Quercetin and Taxifolin Are Not Toxic in Hep G2 Cells

We evaluated the effect of quercetin and taxifolin on viability of Hep G2 by performing
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red assays
over a range of concentrations up to 100 µM for both compounds. Our results show that
quercetin caused toxicity at doses higher than 40 µM (Figure 1A). On the other hand,
taxifolin was considered non-toxic substance in all concentrations tested (Figure 1B). Hence,
we can conclude that physiologically attainable concentration of tested polyphenols, i.e.,
1 µM, is not harmful.

2.2. Analysis of miRNAs Expression Profile in Affymetrix GeneChip™ miRNA 3.0 Arrays

In the next step of the study, we used Affymetrix GeneChip™ miRNA 3.0 Arrays for
miRNA expression profile analysis after treatment with 1 µM concentration of quercetin
and taxifolin. The chosen microarray platform contains specific probes for more than
1700 human miRNAs. The data processing consisted of normalization of each miRNA
to negative control followed by comparison of distinctly modulated miRNAs with their
validated targets. There are 30 miRNAs with ZEB2 as validated target by using the miR-
TarBase [30] and based on other recent literature (Table 1 and Appendix A, Table A1). The
selected miRNAs met the following criterion—effect on ZEB2 expression was validated by
reporter assay, Western blot or qPCR technique. Our gene chip analysis revealed twelve
miRNAs of the 30 with ZEB2 as validated target, deregulated more than 1.5 times by
taxifolin compared to control. Four of them were downregulated and seven were upregu-
lated in Hep G2 cell model. In primary hepatocytes one and two miRNAs were up- and
downregulated, respectively. Overall, hsa-miR-211 and hsa-miR-377 were downregulated
in both models (Table 1).
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Figure 1. Cytotoxicity of tested compounds on Hep G2 cells evaluated with MTT and Neutral red 
assays. Panel (A) represents cytotoxicity of quercetin and panel (B) cytotoxicity of taxifolin evalu-
ated with MTT/Neutral red assay that are shown as filled bars/empty bars, respectively. Each bar 
represents mean ± SD of three independent experiments. Cells were incubated with tested com-
pounds for 24 h; in each experiment triplicate measurements were performed. * p < 0.05(** p < 0.01/*** 
p < 0.001) versus negative control. 
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hsa-miR-129-5p 2.42 2.11 0.94 0.27 4.53 6.58 1.07 0.17 [31] 
hsa-miR-139-5p 1.40 0.16 1.35 0.86 2.14 1.06 1.34 1.09 [32] 
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hsa-miR-153 1.02 0.37 0.72 0.24 0.67 0.27 1.39 0.89 [30] 
hsa-miR-154-5p 1.40 0.44 1.73 1.09 1.63 0.48 1.45 0.60 [30] 
hsa-miR-200c-3p 1.00 0.00 1.59 0.47 1.00 0.04 1.85 0.70 [30] 

hsa-miR-204 0.79 0.55 0.78 0.03 0.68 0.32 0.86 0.38 [33] 
hsa-miR-211 1.17 0.72 0.91 0.42 0.59 0.20 0.74 0.33 [34] 

hsa-miR-335-5p 1.47 1.49 0.77 0.20 2.10 2.98 0.84 0.14 [30] 

Figure 1. Cytotoxicity of tested compounds on Hep G2 cells evaluated with MTT and Neutral
red assays. Panel (A) represents cytotoxicity of quercetin and panel (B) cytotoxicity of taxifolin
evaluated with MTT/Neutral red assay that are shown as filled bars/empty bars, respectively.
Each bar represents mean ± SD of three independent experiments. Cells were incubated with
tested compounds for 24 h; in each experiment triplicate measurements were performed. * p < 0.05
(** p < 0.01/*** p < 0.001) versus negative control.

2.3. Taxifolin Modulates ZEB2 Expression in Hep G2 Cells But Not in Primary Cultures of
Human Hepatocytes

Our results from the gene chips suggested modulation of ZEB2 protein expression via
miRNA. Therefore, we evaluated the impact of taxifolin and quercetin on ZEB2 protein
expression. We performed 24 h incubation with tested compounds followed by whole
lysates preparation and Western blot analysis. In the Hep G2 cells taxifolin caused dose
dependent upregulation of ZEB2 expression (Figure 2), but quercetin did not (Appendix A,
Figure A1). There were no significant effects by either tested compound on ZEB2 expression
in primary cultures of human hepatocytes (data not shown).
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Table 1. Expression analysis of miRNAs that contain ZEB2 as their validated target in Hep G2 and human hepatocytes.

miRNA

Mean Relative Expression Compared to Control

ReferencesQuercetin Taxifolin

Hep G2 Human Hepatocytes Hep G2 Human Hepatocytes

Mean SD Mean SD Mean SD Mean SD

hsa-miR-129-5p 2.42 2.11 0.94 0.27 4.53 6.58 1.07 0.17 [31]
hsa-miR-139-5p 1.40 0.16 1.35 0.86 2.14 1.06 1.34 1.09 [32]
hsa-miR-141-3p 1.90 0.96 0.98 0.17 1.56 1.21 1.00 0.42 [30]

hsa-miR-153 1.02 0.37 0.72 0.24 0.67 0.27 1.39 0.89 [30]
hsa-miR-154-5p 1.40 0.44 1.73 1.09 1.63 0.48 1.45 0.60 [30]
hsa-miR-200c-3p 1.00 0.00 1.59 0.47 1.00 0.04 1.85 0.70 [30]

hsa-miR-204 0.79 0.55 0.78 0.03 0.68 0.32 0.86 0.38 [33]
hsa-miR-211 1.17 0.72 0.91 0.42 0.59 0.20 0.74 0.33 [34]

hsa-miR-335-5p 1.47 1.49 0.77 0.20 2.10 2.98 0.84 0.14 [30]
hsa-miR-377-3p 1.42 1.16 0.65 0.19 0.64 0.43 0.57 0.05 [35]
hsa-miR-590-3p 1.16 0.54 1.15 0.31 2.09 0.81 0.95 0.08 [30]

hsa-miR-4782-3p 1.47 0.55 0.75 0.21 1.73 0.96 1.06 0.37 [30]

The values represent mean of three independent samples/arrays compared to control. Expression changes lower than 0.75 are highlighted
in grey boxes, expression changes higher than 1.5 are highlighted in bold. Table includes differences against current nomenclature because
we used Affymetrix GeneChip™ miRNA 3.0 Arrays which do not contain 3p/5p specification of hsa-miR-153, hsa-miR-211, hsa-miR-215,
and any specification for hsa-miR-203. The references listed for each row refer to the sources where the ZEB2 protein has been validated as
a target for a given miRNA.

2.4. ZEB2 Upregulation Did Not Cause the Epithelial to Mesenchymal Transition

ZEB2 protein is important in EMT [36], a process that occurs in advanced stages of
cancer development. It is linked to higher aggressiveness of the malignancy and mobility of
cancer cells [37]. Therefore, we tested for these properties in experiments with xCELLigence
system, wound healing assay and Western blot evaluation of vimentin protein expression
as markers of EMT. Surprisingly, Western blot results showed dose dependent decrease
of vimentin expression (Figure 3). That suggests the EMT process does not occur in
treated Hep G2 cells and another, perhaps stronger, signalling pathway exists that regulates
vimentin expression. In addition, wound healing assay after 24 h, as well as cell morphology
after 24 h treatment showed only negligible changes (Appendix A, Figure A2B,C). On the
other hand, xCELLigence results after 24 h incubation show that taxifolin dose dependently,
albeit very slightly, enhances growth of Hep G2 cells in the concentration range from 1 to
10 µM. The data, however, failed to reach statistical significance when compared to negative
control with dimethyl sulfoxide (DMSO) (p10 µM = 0.065, Appendix A, Figure A2A).

2.5. Taxifolin Negatively Regulates Vimentin Expression via Akt Dephosphorylation

The effect of taxifolin treatment on the modulation of vimentin expression, a down-
stream target of ZEB2 [38], was contrary to our preceding results. A search of the literature
revealed several signalling proteins, transcription factors or miRNAs, which modulate
vimentin expression while being regulated by the taxifolin treatment. These are miR-375,
c-jun, NFκB, β-catenin and dephosphorylation of Akt. We endeavoured to test which of
these could be responsible for the dual effect of taxifolin. Our results show that Akt de-
phosphorylation is the decisive signal for vimentin downregulation (Figure 4). Expression
of another potential candidate, wild-type β-catenin, was downregulated in the cytosol frac-
tion and a similar trend was observed in the nuclear fraction (Appendix A, Figure A3A,B).
Further, the data for wild-type β-catenin suggest a slight, statistically insignificant relo-
cation of the protein with taxifolin. On the other hand, expression of the truncated form
of β-catenin was unchanged (Appendix A, Figure A3C,D). c-jun (Figure 4A), NFκB, and
miR-375 showed non-significant differences (data not shown). Moreover, experiments with
Akt inhibitor GSK690693 showed correlation between Akt activity and vimentin expression
that is consistent with our hypothesis (Appendix A, Figure A5A). Activity of Akt kinase
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was evaluated via phosphorylation of CREB (Ser133) as a downstream target (Appendix A,
Figure A6) [39].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 19 
 

 

hsa-miR-377-3p 1.42 1.16 0.65 0.19 0.64 0.43 0.57 0.05 [35] 
hsa-miR-590-3p 1.16 0.54 1.15 0.31 2.09 0.81 0.95 0.08 [30] 

hsa-miR-4782-3p 1.47 0.55 0.75 0.21 1.73 0.96 1.06 0.37 [30] 
The values represent mean of three independent samples/arrays compared to control. Expression changes lower than 0.75 
are highlighted in grey boxes, expression changes higher than 1.5 are highlighted in bold. Table includes differences 
against current nomenclature because we used Affymetrix GeneChip™ miRNA 3.0 Arrays which do not contain 3p/5p 
specification of hsa-miR-153, hsa-miR-211, hsa-miR-215, and any specification for hsa-miR-203. The references listed for 
each row refer to the sources where the ZEB2 protein has been validated as a target for a given miRNA. 

2.3. Taxifolin Modulates ZEB2 Expression in Hep G2 Cells but not in Primary Cultures of 
Human Hepatocytes 

Our results from the gene chips suggested modulation of ZEB2 protein expression 
via miRNA. Therefore, we evaluated the impact of taxifolin and quercetin on ZEB2 pro-
tein expression. We performed 24 h incubation with tested compounds followed by whole 
lysates preparation and Western blot analysis. In the Hep G2 cells taxifolin caused dose 
dependent upregulation of ZEB2 expression (Figure 2), but quercetin did not (Appendix 
A, Figure A1). There were no significant effects by either tested compound on ZEB2 ex-
pression in primary cultures of human hepatocytes (data not shown). 

 
Figure 2. Modulation of ZEB2 expression by taxifolin in Hep G2 cells. Panel (A): Hep G2 cells were 
seeded and incubated with different concentrations of taxifolin. Negative control contains only di-
methyl sulfoxide (DMSO). ZEB2 expression was evaluated by Western blot after 24 h of incubation. 
Each bar represents mean ±SD of three independent experiments. Panel (B): representative Western 
blot. ** p < 0.01(*** p < 0.001) versus negative control. 

Figure 2. Modulation of ZEB2 expression by taxifolin in Hep G2 cells. Panel (A): Hep G2 cells were
seeded and incubated with different concentrations of taxifolin. Negative control contains only
dimethyl sulfoxide (DMSO). ZEB2 expression was evaluated by Western blot after 24 h of incubation.
Each bar represents mean ±SD of three independent experiments. Panel (B): representative Western
blot. ** p < 0.01(*** p < 0.001) versus negative control.

2.6. Reduction of ZEB2 Expression by miR-377 Precursors Is Restored by Taxifolin in a
Dose-Dependent Manner

All experiments performed so far have not shown an association between the miRNA,
expression of ZEB2 and taxifolin. Therefore, we transiently transfected Hep G2 cells with
two different miRNA precursors or negative control. The transfected cells were incubated
with selected concentrations of taxifolin. The cells transfected with miR-377 precursors
showed the expected reduction in ZEB2 expression that was restored by taxifolin in a dose
dependent manner. On the other hand, miR-211 transfected cells showed neither ZEB2
down-regulation, nor taxifolin restoration of the effect. Induction of ZEB2 by taxifolin was
present after transfection of the cells with negative control precursors as well.
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Figure 3. Modulation of vimentin expression by taxifolin. Panel (A): Hep G2 cells were seeded
and incubated with different concentrations of taxifolin or negative control (contains only DMSO).
Vimentin expression was evaluated by Western blot after 24 h of incubation. Each bar represents
mean ± SD of three independent experiments. Panel (B): representative Western blot. * p < 0.05 (*** p
< 0.001) versus negative control.
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Figure 4. Modulation of Akt phosphorylation (Ser473) by taxifolin. Panel (A): Hep G2 cells were
seeded and incubated with different concentrations of taxifolin or negative control (contains only
DMSO). Akt phosphorylation was evaluated by Western blot after 24 h of incubation. Each bar
represents mean ± SD of three independent experiments. Panel (B): representative Western blot.
* p < 0.05 (** p < 0.01) versus negative control.

3. Discussion

Experimental design invokes a crucial decision on what concentration or concentration
range to use. Preferably one that has been used by predecessors or one that was established
as attainable under physiological situation in the serum. Literature search indicated that
such a concentration for quercetin and taxifolin is approximately 1 µM [40–42]. This was
the main reason why we chose 1 µM concentration for our experiments performed with
gene chip technology. The initial toxicity experiment was designed to ensure that any toxic
effect of the tested compounds appears at concentrations at least 20-fold higher. Another
crucial decision was the selection of in vitro model. Because liver is the organ deemed
responsible for majority of xenobiotic metabolism, we chose cell models that represent
liver. Moreover, the liver is the first organ exposed to effects of these compounds following
intestinal absorption. Hence, there is high probability that the tissue is exposed to the
highest amount/concentration of the compounds, most likely including the concentration
range used in our experiments.

miRNA array analysis is a comprehensive tool for extensive analysis of miRNAs
expression. It offers a huge set of probes for different miRNAs fixed to a glass matrix in
precisely defined positions from which the amount of single miRNAs can be determined
based on fluorescence intensity. Our data revealed several miRNAs that are linked to ZEB2
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expression as deregulated (Tables 1 and A1). Hence, every miRNA can play a different
role in the ZEB2 expression in a particular tissue. The final result is dependent on a “final
vector” composed from all miRNA effects. Therefore, the apparent effect of a treatment on
a single miRNA or even a set of miRNAs must be verified through independent approaches
as it could be diminished or abolished altogether because of other influences.

In our case the Western blot analysis demonstrated a dose dependent induction of
ZEB2 expression during taxifolin treatment giving support to the working hypothesis of
modulating EMT via miRNA (Figure 2). Quercetin, despite the same trend of influence
on ZEB2 expression, did not reach statistical significance because of high variability (data
not shown) which may be related to the different stability of quercetin and taxifolin
in the culture medium [43]. ZEB2 is an important part of EMT signalling and plays a
significant role in carcinogenesis. The EMT is characterized by different expression of
several integral proteins such as downregulation of E-cadherin and upregulation of N-
cadherin that serve as markers of this important cell process. The result of EMT is loss of
epithelial and gain of mesenchymal phenotype. Epithelial dedifferentiation is associated
with the regulation of various intercellular junction components that results in facilitating
cell migration [36]. Another EMT marker is vimentin, known as an important part of the
cytoskeleton and a player in wound healing or metastasizing of cancer cells [44]. According
to our hypothesis, vimentin upregulation should correspond with expression of ZEB2 [38].
However, vimentin expression did not follow our expectations indicating the existence of
another, perhaps stronger, mechanism or signalling pathway, which can reverse ZEB2-EMT
potential (Figure 3).

The pathways that affect vimentin include NF-κB, β-catenin, c-Jun, and Akt signalling,
all of which were shown to be modulated by taxifolin, see below. NF-κB plays a relatively
important role in cancer, but mutations causing direct activation of NF-κB are rare in solid
tumors compared to blood malignancies [45]. In contrast, several publications suggested
that consecutive NF-κB activity exists in Hep G2 cells. For example, incubation of this
cell line with inhibitor IKK-2 reduces NF-κB activity [46]. In our experiments, the effect of
taxifolin on NF-κB was negative as we expected.

Several publications reported negative effect of taxifolin on β-catenin expression in
breast carcinoma cell lines or colorectal carcinoma cells HCT116 and HT29 [47,48]. β-
catenin plays an important role in the regulation of many tumor-related events and its
activation may result in upregulation of vimentin expression [47]. Generally, β-catenin
activity is regulated by several different mechanisms. The first mechanism is rate of β-
catenin expression; the second, E-cadherin sequesters nascent β-catenin in the cytosol; and
the third possibility is degradation of the protein mediated by the destruction complex that
is negatively associated with the Wnt signalling pathway. The inhibition of the last two
mechanisms is followed by redistribution of β-catenin between cytosol and nucleus [47,49]
thereby affecting its function as transcription factor and co-activator for the TCF/Lef [49].
Lastly, Wnt/β-catenin pathway was shown to be linked to PI3K/Akt pathway with glyco-
gen synthase kinase 3 (GSK-3) as downstream and effector molecule [50]. Indeed, lower
Akt activity was accompanied by β-catenin degradation (Figure A3A,B). However, the Hep
G2 cell line is specific for its truncated form, which is insensitive to GSK-3 (Akt signalling,
Appendix A, Figure A3C,D), [51]. Hence, the contribution of β-catenin appears to be lim-
ited due to reduced expression of wild-type β-catenin and predominance of its truncated
form.

c-Jun is subjected to Akt-dependent regulation as well [52]. However, the protein’s
expression was not significantly changed in our experiments (Figure 4). It seems that these
signalling nodes of the Akt network are modulated in a context-dependent manner as
discussed in several publications [50,53].

Finally, as a serine/threonine kinase, Akt alone mediates many different effects includ-
ing cardioprotection, carcinogenesis, regulation of metabolism, expression of ABC trans-
porters or vimentin via more than one hundred downstream effector molecules [54–57].
According to the literature, taxifolin can mediate Akt dephosphorylation that directly con-
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tributes to depletion of vimentin [57,58] as confirmed by experiments with the Akt inhibitor
GSK690693 (Appendix A, Figure A4). The involvement of Akt in the regulation of EMT is
much more complex than just the modulation of vimentin expression. Reduced activity
of Akt is accompanied by upregulation of E-cadherin and downregulation of N-cadherin
resulting in mesenchymal to epithelial transition [59].

Last set of experiments focused on effect of selected miRNA precursors in the context
of taxifolin-treated cells. The aim was to verify whether these miRNAs are involved
in taxifolin-induced upregulation of ZEB2. We chose miR-377 and miR-211 for these
experiments because the data from the miRNA arrays showed their reduced expression
for both models. The results for cells transfected with miR-377 precursors confirmed
our hypothesis of the involvement of miR-377 (Figure 5). Surprisingly, and contrary to
previously published data, we failed to demonstrate an association between transfection of
miR-211 precursors, taxifolin, and ZEB2 expression [34]. Finally, Hep G2 cells transfected
by negative control precursors showed same dose dependent effect of taxifolin as non-
transfected cells.

Biological activity of polyphenols is in part associated with modulation of miRNA
expression. The overall effect is, however, context-dependent. Data presented in this work
suggest that upregulation of ZEB2 protein by taxifolin treatment, but not by quercetin,
probably proceeds via miR-377 in Hep G2 cell model. On the other hand, primary human
hepatocytes showed only non-significant changes in ZEB2 expression even though two
of the miRNAs, which are linked to ZEB2, were downregulated. This could be explained
by tremendous heterogeneity of primary cultures derived from tissue that underwent
unknown sets of prolonged treatments (lifestyle, diet, pharmacotherapy, etc.).

The overall result in more homogenous, in terms of handling and treatments, cell line
does not support the initial finding of modulation of ZEB2 expression via miRNA. This
is inferred from the lack of EMT one would expect to follow the ZEB2 modulation. We
show that the effect of ZEB2 is reversed due to the second effect of taxifolin: inhibition of
Akt signalling. Which, in turn, suggests that Akt signalling has stronger effect on EMT
than ZEB2 transcription factor alone. It points out that a singular effect of, e.g., taxifolin
on subcellular level may have no positive or negative outcome on cellular or tissue level
because of pleiotropic effects. In our case the overall effect of taxifolin on EMT is neither
negative nor positive, for the substance affects two apparently counteracting signals.



Molecules 2021, 26, 1476 10 of 20
Molecules 2021, 26, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Modulation of ZEB2 in miR-377 transfected cells by taxifolin. Panel (A): Hep G2 cells 
were transfected with miR-377 precursors or negative control and incubated with different con-
centrations of taxifolin. ZEB2 expression was evaluated by Western blot after 24 h of incubation. 
Each bar represents mean ± SD of three independent experiments. Panel (B): representative West-
ern blot. * p < 0.05 versus negative control and # p < 0.05 (## p < 0.01) versus cells transfected with 
miR-377 precursors and incubated with 10 µM taxifolin. 

Biological activity of polyphenols is in part associated with modulation of miRNA 
expression. The overall effect is, however, context-dependent. Data presented in this work 
suggest that upregulation of ZEB2 protein by taxifolin treatment, but not by quercetin, 
probably proceeds via miR-377 in Hep G2 cell model. On the other hand, primary human 
hepatocytes showed only non-significant changes in ZEB2 expression even though two of 
the miRNAs, which are linked to ZEB2, were downregulated. This could be explained by 
tremendous heterogeneity of primary cultures derived from tissue that underwent un-
known sets of prolonged treatments (lifestyle, diet, pharmacotherapy, etc.). 

The overall result in more homogenous, in terms of handling and treatments, cell line 
does not support the initial finding of modulation of ZEB2 expression via miRNA. This is 
inferred from the lack of EMT one would expect to follow the ZEB2 modulation. We show 
that the effect of ZEB2 is reversed due to the second effect of taxifolin: inhibition of Akt 
signalling. Which, in turn, suggests that Akt signalling has stronger effect on EMT than 
ZEB2 transcription factor alone. It points out that a singular effect of, e.g., taxifolin on 

Figure 5. Modulation of ZEB2 in miR-377 transfected cells by taxifolin. Panel (A): Hep G2 cells were
transfected with miR-377 precursors or negative control and incubated with different concentrations
of taxifolin. ZEB2 expression was evaluated by Western blot after 24 h of incubation. Each bar
represents mean ± SD of three independent experiments. Panel (B): representative Western blot. *
p < 0.05 versus negative control and # p < 0.05 (## p < 0.01) versus cells transfected with miR-377
precursors and incubated with 10 µM taxifolin.

4. Materials and Methods
4.1. Chemicals

Quercetin, taxifolin, dimethyl sulfoxide (DMSO), Dulbecco’s Modified Eagle Medium—
high glucose, Nutrient Mixture F-12 Ham, William’s E Medium, penicillin (10,000 units/mL)
streptomycin (10 mg/mL) solution, bovine serum albumin, ethanol, isopropanol, TRI
Reagent, chloroform, nuclease free water, collagen, methanol, glucose, glutamine, sodium
pyruvate, dexamethasone, holo-transferrin, ethanolamine, insulin, glucagon, ascorbic acid,
linoleic acid, amphotericin B, fluconazole, ammonia, ammonium persulfate, acrylamide/bis-
acrylamide (37.5:0.9), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),
and neutral red were from Merck (Darmstadt, Germany). Non-essential amino acids,
Pre-miR™ miRNA Precursor—hsa-miR-377-3p, Pre-miR™ miRNA Precursor—hsa-miR-
211-5p, Pre-miR™ miRNA Precursor Negative Control #1, Lipofectamine 2000, TaqMan™
MicroRNA Assay for hsa-miR-375, TaqMan™ MicroRNA reverse transcription kit and
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TaqMan™ Universal PCR Master Mix, no AmpErase™ UNG were obtained from Life-
Technologies (Prague, Czech Republic). Fetal bovine serum was purchased from Bio-Tech
(Prague, Czech Republic).

4.2. Cell Culture Conditions

Hep G2 cells were obtained from ECACC (No. 85011430 Human Caucasian hepa-
toblastoma cell line) via Sigma-Aldrich (St. Louis, MO, USA) as provider. Dulbecco’s
Modified Eagle Medium—high glucose containing supplements was used for cultiva-
tion of the cells (supplements: 10% fetal bovine serum, 5% non-essential amino acids,
100 units/mL of penicillin, and 0.1 mg/mL of streptomycin). Cells were incubated in
humidified incubator with 5% CO2 atmosphere at 37 ◦C and passaged every 2 to 4 days.

4.3. Primary Cultures of Human Hepatocytes

Isolation of primary human hepatocytes was performed according to a two-step
collagenase perfusion followed by hepatocyte release and centrifugation cleaning steps.
For culturing, collagen-coated culture dishes were used, and 2 × 105 cells were seeded per
every cm2. The cells were plated in ISOM medium containing dexamethasone and insulin
supplemented with 10% fetal bovine serum, 100 units/mL of penicillin, and 0.1 mg/mL
of streptomycin. The serum containing medium was replaced after 24 h stabilization by
serum-free medium with composition described above. Further, cells were exposed to
tested compounds or vehicle control (DMSO).

Primary human hepatocytes were obtained from multiorgan donors in accordance
with the permission from ethics committee of University Hospital Olomouc (reference
number 119/07).

4.4. Cell Viability Assays

MTT assay is based on reduction of MTT (5 mg/mL) to formazan by mitochondrial
oxidoreductases. The reduction takes place only in live and metabolically active cells [60].
Incubation with polyphenols was followed by PBS washing step and addition of freshly
prepared solution of MTT in serum-free medium solution in ratio of 1:10. The mixture was
pipetted in to each well, treated with tested compounds or DMSO or Triton-X100 solution,
and cells were incubated for 2 h at 37 ◦C. The mixture was aspirated, and formazan crystals
were dissolved in DMSO/0.1% NH3 solution. Absorbance was measured at 540 nm.

Neutral red assay is pursuant to accumulation of neutral red dye within the cells.
Incubation with polyphenols was followed by PBS washing step and addition of freshly
prepared neutral red solution:serum-free medium in 3:8 ratio. The final solution was
pipetted into each well, treated with tested compounds or DMSO or Titon-x100 solution,
and cells were incubated for 2 h at 37 ◦C. The solution was discarded, and cells were
washed with mixture of 0.5% formaldehyde +1% CaCl2 solution (200 µL, 1:1 ratio) and
then dissolved in 50% methanol containing 1% CH3COOH. Absorption was measured at
550 nm.

4.5. xCELLigence System

xCELLigence Real-Time Cell Analysis Instrument (Accela, Prague, Czech Republic)
utilizes E-plates with well bottoms containing gold electrodes for measuring of impedance.
The recorded data are subsequently recalculated to a cell index and plotted versus time. The
arbitrary unit of “cell index” is proportional to the number of cells covering the electrodes
of E-Plates. Every “E-Plate view 16 PET” contains sixteen wells identical in size to those
in 96 well plates. Each trace of cell index versus time was subjected to evaluation in
RTCA software 1.2.1. The results are expressed as doubling time in selected time period
normalized to negative control (see Figure 6). The taxifolin addition is accompanied by
exchange of media which results in formation of an artefact in the traces. Hence, the
doubling point analysis was started when the cell index of all traces was stabilized and
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growing. The very last point of tested data set was 24 h later. In this case, the data represent
proliferation rate of treated cells.
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Figure 6. Example of xCELLigence trace recording. The figure contains xCELLigence traces (curves)
to illustrate the evaluation method. The dashed line represents treatment of 10 µM taxifolin and the
solid line represents DMSO treated control.

4.6. Bright-Field Microscopy

Zeiss AxiovertC microscope (2.5×, 5×, and 40× objectives) with a Zeiss AxioCam
ICM1 (Zeiss GmbH, Jena, Germany) was used for evaluation of cell morphology changes
and wound healing assays.

4.7. RNA Isolation

The TRI-Reagent was utilized for RNA isolation and purification, according to manu-
facturers recommended protocol. The established standard method is based on phenol-
chloroform extraction published by Chomczynski et al. [61]. Purity and amount of RNA
was measured by Implen Nanophotometer (Implen GmbH, München, Germany). RNA
used for experiments had purity higher than 1.8 (A260/A280).

4.8. miRNA Array Analysis

miRNA array analysis was done with Affymetrix GeneChip™ miRNA 3.0 arrays. The
method used oligonucleotide probes attached to glass matrix, organized into a specific
pattern. At the beginning of the experiment, each oligonucleotide in the sample was
enriched with the polyA tail that was connected with modified biotin containing polyT. This
step was followed by hybridization of sample miRNAs with probes on the array. Quantity
of different miRNA was detected via fluorescently labelled streptavidin. Detection was
done in Affymetrix scanning machine GeneChip™ Scanner 3000 7G (Affymetrix [part
of ThermoFisher Scientific company], Santa Clara, CA, USA). We used manufacturer’s
recommended protocol for sample preparation, hybridization, staining and detecting of
our oligonucleotides.
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4.9. RT-PCR

Reverse transcription is a standard molecular biology procedure that was performed
for cDNA synthesis from miRNA template. The specificity was ensured by TaqMan™ Mi-
croRNA Assay primers. The product was then used for real-time PCR analysis with specific
TaqMan™ primers and probes. For actual RT-PCR reaction Roche Light Cycler 480 (Roche,
Basel, Switzerland) was used. The delta-delta Ct method was used for quantification [62].

4.10. Immunodetection

Whole cell lysates or subcellular extracts were used for immunodetection. Sample
separation was done at 10% or 12.5% SDS-PAGE gels and then transferred onto PVDF
membranes. Individual proteins ZEB2, NFκB, c-jun, vimentin, Akt, p-Akt (Ser473), p-CREB
(Ser133), β-catenin, β-tubulin, GAPDH, and actin were detected using the corresponding
primary antibody at 1:1000 and secondary antibody at 1:10,000 dilution. Primary and
secondary (HRP-linked) antibodies were obtained from Santa Cruz biotechnologies (Dallas,
TX, USA) or Cell Signaling Technology (Danvers, MA, USA). Detection was performed
using commercially available substrate solution ImmunoCruz (Santa-Cruz biotechnology)
and Cerastream Kodak BioMax light films (Sigma-Aldrich, St. Louis, MO, USA) or Fuji
medical X-ray films (FujiFilm, Tokyo, Japan).

4.11. Transfection

Precursors of hsa-miR-211, hsa-miR-377, or negative control were transfected into
the cells using Lipofectamine 2000. Transfection of cells in suspension was performed
according to the manufacturer’s protocol. Incubation with transfection mixture lasted 6 h.
More detailed protocol was described elsewhere [63].

4.12. Statistical Analysis

One way ANOVA with Tukey´s post hoc test for statistic evaluation of our datasets
was done in the Statistica 12 software (StatSoft CR s.r.o. [part of Dell company], Prague,
Czech Republic).
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Appendix A

Table A1. Expression analysis of miRNAs that contain ZEB2 as their validated target in Hep G2 and human hepatocytes.

miRNA

Mean Relative Expression Compared to Control

ReferencesQuercetin Taxifolin

Hep G2 Human Hepatocytes Hep G2 Human Hepatocytes

Mean SD Mean SD Mean SD Mean SD

hsa-miR-30a-5p 0.92 0.05 0.95 0.05 0.89 0.24 0.95 0.09 [27]
hsa-miR-30a-3p 0.85 0.24 1.51 0.99 0.87 0.33 1.26 0.88 [27]
hsa-miR-101-3p 0.94 0.46 1.04 0.35 1.15 0.80 1.22 0.55 [30]
hsa-miR-129-5p 2.42 2.11 0.94 0.27 4.53 6.58 1.07 0.17 [31]
hsa-miR-132-3p 0.99 0.01 0.82 0.37 1.01 0.05 1.23 0.25 [64]
hsa-miR-138-5p 1.07 0.16 0.89 0.24 1.12 0.16 0.91 0.34 [30]

hsa-miR-138-1-3p 1.00 0.04 0.95 0.29 0.99 0.03 1.12 0.52 [30]
hsa-miR-139-5p 1.40 0.16 1.35 0.86 2.14 1.06 1.34 1.09 [32]
hsa-miR-141-3p 1.90 0.96 0.98 0.17 1.56 1.21 1.00 0.42 [30]
hsa-miR-144-3p 0.92 0.20 1.02 0.36 0.99 0.24 1.30 0.29 [30]
hsa-miR-145-5p 1.01 0.01 0.92 0.34 1.01 0.02 1.00 0.41 [65]

hsa-miR-153 1.02 0.37 0.72 0.24 0.67 0.27 1.39 0.89 [30]
hsa-miR-154-5p 1.40 0.44 1.73 1.09 1.63 0.48 1.45 0.60 [30]
hsa-miR-192-5p 1.00 0.02 0.99 0.01 1.00 0.02 1.01 0.03 [66]

hsa-miR-200a-3p 0.99 0.03 0.90 0.27 1.02 0.03 1.37 0.36 [30]
hsa-miR-200b-3p 1.01 0.02 1.03 0.49 0.99 0.05 0.98 0.19 [30]
hsa-miR-200c-3p 1.00 0.00 1.59 0.47 1.00 0.04 1.85 0.70 [30]

hsa-miR-203 0.89 0.73 0.81 0.37 1.10 0.94 0.92 0.48 [30]
hsa-miR-204 0.79 0.55 0.78 0.03 0.68 0.32 0.86 0.38 [33]

hsa-miR-205-5p 1.12 0.21 1.08 0.61 1.27 0.27 1.07 0.44 [30]
hsa-miR-211 1.17 0.72 0.91 0.42 0.59 0.20 0.74 0.33 [34]
hsa-miR-215 1.12 0.24 0.84 0.18 1.07 0.28 1.20 0.55 [30]

hsa-miR-221-3p 1.00 0.01 1.04 0.06 0.99 0.01 1.03 0.11 [30]
hsa-miR-335-5p 1.47 1.49 0.77 0.20 2.10 2.98 0.84 0.14 [30]
hsa-miR-338-3p 1.40 0.62 0.66 0.15 0.91 0.24 0.85 0.22 [30]
hsa-miR-377-3p 1.42 1.16 0.65 0.19 0.64 0.43 0.57 0.05 [35]

hsa-miR-429 0.92 0.36 0.94 0.18 1.05 0.60 0.96 0.16 [30]
hsa-miR-590-3p 1.16 0.54 1.15 0.31 2.09 0.81 0.95 0.08 [30]
hsa-miR-708-5p 0.91 0.32 1.49 0.47 1.36 0.58 1.01 0.37 [30]

hsa-miR-4782-3p 1.47 0.55 0.75 0.21 1.73 0.96 1.06 0.37 [30]

The values represent mean of three independent samples/arrays. Expression changes lower than 0.75 are highlighted in grey boxes,
expression changes higher than 1.5 are highlighted in bold. Each reference represents source of information connected to ZEB2 regulation
via specific miRNA. Table includes differences against current nomenclature because we used Affymetrix GeneChip™ miRNA 3.0 Arrays
which do not contain 3p/5p specification of hsa-miR-153, hsa-miR-211, hsa-miR-215, and any specification for hsa-miR-203. The references
listed for each row refer to the sources where the ZEB2 protein has been validated as a target for a given miRNA.
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Figure A2. Modulation of Hep G2 proliferation, wound healing, and vimentin expression by taxifolin.
Panel (A): Hep G2 cells were treated with taxifolin in xCELLigence system for 24 h. Differences in
the doubling time were evaluated and normalized to negative control (DMSO). Panel (B): Hep G2
cells were seeded and incubated with 10 µM taxifolin or negative control containing DMSO. Wound
healing was evaluated by bright field mode of Zeiss AxiovertC microscope after 24 h of incubation.
Objective with magnitude 2.5× was used during the experiment. Panel (C): Hep G2 cells were
seeded and incubated with 10 µM taxifolin or negative control (contains only DMSO). Morphological
changes were evaluated by bright field microscope after 24 h of incubation with objective magnitude
5× or 40×.
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Figure A3. Modulation of wild-type and truncated β-catenin expression by taxifolin. Panel (A): Hep G2 cells were seeded
and incubated with different concentrations of taxifolin or negative control (contains only DMSO). After nuclear/cytosol
fractionation (empty/filled bars), wild type β-catenin expression was evaluated by Western blot after 24 h of incubation. The
data are mean±SD of three independent experiments. Panel (B): representative Western blot of wild-type β-catenin. Panel
(C): Hep G2 cells were seeded and incubated with different concentrations of taxifolin or negative control (contains only
DMSO). After nuclear/cytosol fractionation (empty/filled bars), truncated β-catenin expression was evaluated by Western
blot after 24 h of incubation. Each bar represents mean±SD of three independent experiments. Panel (D): representative
Western blot of truncated β-catenin. ** p < 0.01 versus negative control.
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