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This mini-review summarizes the current evidence for the role of macrophage activation
and polarization in inflammation and immune response pertinent to interstitial lung
disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and
function of inflammatory and fibrogenic mediators involved in the disease development
have been reported to be regulated by the effects of polarized M1/M2 macrophage
populations. The M1 and M2 macrophage phenotypes were suggested to correspond
with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses
towards tissue injury followed by the development and progression of lung fibrosis are
further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs,
extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed
to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the
noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested
as a promising therapeutic strategy for this debilitating disease.
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INTRODUCTION

Pulmonary fibrosis (PF) is a progressive, irreversible and lethal lung disease and has remained a
challenge for clinicians and researchers. The tissue injury accompanied by cellular inflammation in
the lungs drives fibrotic response and thus, plays a crucial role in the pathogenesis of fibrosis.
Inflammatory cells release TGF-b, the key regulator of several profibrotic cytokines/chemokines,
their receptors/subunits, and growth factors inducing epithelial-mesenchymal transition (EMT) (1–
3). The pro-inflammatory and profibrotic cytokines involved in PF promote inflammation and
irreversible damage to lung architecture with the loss of alveolar-capillary barrier basal membrane
leading to persistent fibrosis (4). These pathogenic factors for PF have further been reported as
associated with genetic factors including gene variants and non-coding regulatory microRNAs
(3–7).

The tissue‐resident macrophages (M0) are versatile cells that exhibit a high degree of plasticity
represented by classically activated M1 (pro-inflammatory) or alternatively activated M2 (anti-
inflammatory/pro-fibrotic) macrophages (8). The macrophage polarization is extremely variable
and switching of one “activation-type” to another, stimulated by appropriate factors or tissue
org August 2021 | Volume 12 | Article 6784571
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microenvironment, is a rapid and reversible process. The cross-
talk between macrophages and the microenvironment regulates
tissue regeneration, flagged with key surface markers in both
pro-regenerative and profibrotic environments (9).

Thus, besides the development of tissue homeostasis, these
cells are suggested with sequential roles in both induction and
resolution of inflammation. The M0macrophages can polarize to
M1 or M2 (M2a, M2b, M2c, and M2d) in response to different
activators, such as LPS/IFNg and IL4/IL13, respectively (10). The
M1 macrophage phenotype can also be stimulated without the
presence of lymphocytes, for example, by inflammatory
cytokines and microorganism‐derived molecules (10–13). The
anti-inflammatory or immune-compromised state associated
with the M2 macrophage phenotype is also supported with
suppressed multiple interferon-associated pathways as one of
the most prominent signals common among all M2-polarizing
stimuli (14). The M1 macrophage can readily repolarize to M2a
(stimulated with reduced IL10 and TNFa, and increased Ym1
level) and M2b (increased IL10 and reduced TNFa)
subpopulations (13). Similarly, macrophage M2b can convert
to other M2 subtypes in response to different stimuli (15). The
different approaches to macrophage polarization have been
associated with both the demerits and benefits influencing
their utility for specific tissues. Where possible, future
therapeutic approaches are suggested to consider tailoring of
strategy towards the formation of a specific tissue-
microenvironment, as well as promotion of specific disease-
associated cell subsets, to improve efficacy and minimize off-
target effect (11).

In deciphering pathomechanisms of lung fibrosis, pulmonary
macrophages have been implicated with a key role in the
Frontiers in Immunology | www.frontiersin.org 2
fibrogenic process. The PF has been proposed to be regulated
by macrophage plasticity (M1/M2 polarization) with an
immunogenic signature network of chemokines such as
MCP-1, MIP-1a, CCL18, and cytokines such as TNFa,
TGFb1, and their respective signaling pathways (16–18). The
pro-inflammatory M1 macrophage polarization with
overexpression of iNOS, TNFa, IL1, IL6, IL12, IL23, MCP-1,
and IFNg is associated with inflammation, antitumoral functions
and graft rejection (Table 1). The anti-inflammatory M2
macrophage polarization, characterised by overexpression of
signature proteins such as TGFb1, IL10, Arginase1, CD204,
CD206, VEGF, Ym1, PDGF, MMPs, and IL4Ralpha, was
associated with immune regulation, matrix deposition, tissue
remodelling, protumoral functions, and graft acceptance (17, 19).
The antitumoral and protumoral role of M1 and M2
macrophages, respectively, are further supported with longer
survival outcomes among patients with a high M1/M2 ratio in
cancers such as ovarian (20, 21) and breast (22) cancer.
ROLE OF LUNG MACROPHAGE
POLARIZATION IN PULMONARY
FIBROSIS

Macrophages are innate immune cells with antimicrobial
phagocytic activity and also play a key role in the pathogenesis
of fibrotic disease of pulmonary interstitium. Macrophages are
involved at all stages of lung injury and repair, and can promote
as well as inhibit fibrosis (16, 23). Airway lumen-based Alveolar
macrophages (AM) with surface markers CD11blow CD11c++
TABLE 1 | Macrophage subtypes, its activators and implication of cytokines and chemokines in functional response that is also regulated by microRNAs-mediated
macrophage plasticity.

M1 and
M2
subtypes

Polarization activa-
tors

Cytokines and chemokines Functional response MicroRNAs expression and its
role in M1/M2 macrophage

polarization

M1 LPS, IFNg, TNFa and
GM-CSF

Cytokines: TNFa, IL1b, IL6, IL8/
CXCL8, IL12, IL23

Th1 response to infection; produces pro-
inflammatory molecules, including TNFa and IL1,
IL6, IL12, IL23

↑: miR-21 (M1⊣; M2!), -33 (M1!;
M2⊣), -34a (M1!; M2⊣), -101
(M1!; M2⊣), -125b-5p (M1!;
M2⊣), -146b (M1⊣), -155 (M1!;
M2⊣), -342-5p (M1!)

Chemokines: CCL2, CCL3, CCL4,
CCL5, CCL8, CCL9, CCL10, CCL11,
CXCL1

↓: miR-125b-5p (M1⊣), let-7e (M1⊣)

M2a IL4, IL13 Cytokines: IL10, TGFb, IL1Ra Th2 cells, eosinophils, basophils, and
macrophages produce IL4. Facilitation of parasite
encapsulation

↑: miR-124 (M1⊣; M2!), -125a-5p
(M1!), -135b (M2↑), -146a (M1⊣;
M2!), let-7c (M1⊣; M2!), -511-3p
(M2!), -378-3p (M2!), -223 (M1⊣;
M2!), ↓: miR-140 (M2!)

Chemokines: CCL17, CCL22, CCL24

M2b Immune complexes
plus TLR or IL1R
ligands

Cytokines: TNF, IL1b, IL6, IL10 Immunoregulation with up-regulated IL10 and
antigen presentation (MHC II, CD86), and
down-regulated IL12

Chemokines: CCL1

M2c IL10, TGFß1 and
glucocorticoids

Cytokines: IL10, TGFb Tissue remodelling and extracellular matrix
production

M2d IL6 and adenosine – Tumour-associated immune regulation
Augus
TNF-a, Tumour necrosis factor-a; IFN-g, Interferon-g, LPS, lipopolysaccharide; GM-CSF, granulocyte-macrophage colony stimulation factor; IL, interleukin; miR, microRNA.
Symbols for MicroRNA expression level: ↑, up-regulation; ↓, down-regulation.
Symbols for M1/M2 macrophage polarization: !, progression; ⊣, inhibition.
t 2021 | Volume 12 | Article 678457

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kishore and Petrek Macrophage Plasticity in Pulmonary Fibrosis
CD169+, and lung parenchymal interstitial macrophages (IM)
with CD11b+ CD11clo CD169- are the two major distinct
macrophage populations contributing to lung homeostasis
(24). During the development processes of tissue injury and
inflammatory reaction and their subsequent progression to PF,
AM and IM are polarized to different cell phenotypes - M1 and
M2 macrophages, respectively (16, 25). During tissue damage
and the early inflammatory phase, activation of M1 macrophages
clears the pathogenic microorganisms and promotes
inflammation through extracellular matrix degrading matrix
metalloproteases (MMPs) and pro-inflammatory cytokines.
The active cytokine milieu, including elevated Th1 cytokines,
IL2, IFNg, and TNFa, is believed to drive the classical pro-
inflammatory (M1) macrophage activation, while a proportion
of anti-inflammatory M2 macrophages tends to be higher in
other types of interstitial lung diseases (ILDs), including
idiopathic pulmonary fibrosis (IPF) (26).

The enhanced M2 macrophage polarization has been suggested
to inhibit the inflammatory reaction and/or directly regulate the
development and progression of fibrotic lung diseases through the
production of chemokines, MMPs, tissue inhibitor of
metalloproteinases (TIMPs), and fibronectin as well as, the
capability of M2 to differentiate into fibrocyte-like cells that
express collagen (27–30). Among ILDs, an increased proportion
of M2 macrophages has been observed in granulomas of patients
with sarcoidosis as compared with tuberculous granulomas (31). It
still needs to be established if a higher proportion of M2
macrophages identifies a profibrotic mechanism inherent to the
pathogenesis of sarcoidosis rather than as a part of a generalized
wound-healing mechanism to lung inflammation and injury (30,
31). Further, activated macrophages secrete cytokines that attract
and stimulate proliferation, promote survival and migration of
fibroblast mediated by platelet-derived growth factor (PDGF)
(32). In a recent study, inhibition of M2 macrophage polarization
has been shown to inhibit bleomycin-induced IPF in rats (33).
Similarly, Wang et al. reported that treatment with microcystin-
leucine arginine ameliorates PF through suppressed CD206+ M2-
like macrophage polarization by blocking EMT and fibroblast-
myofibroblast transition (FMT), and also substantial reduction of
TGFb1/Smad signaling in rat pulmonary tissues (34). Thus, pro-
fibrotic processes such as EMT, FMT, and TGFb1/Smad signaling
represent potential targets in mitigating the development and/or
progression of PF (Figure 1). Supporting the profibrotic role of M2,
a recent study showed attenuation of M2 macrophage infiltration in
the lung to significantly protect mice against bleomycin-induced
lung injury and fibrosis through suppression of Sart1 by small
interfering RNA-loaded liposomes (35).

The macrophage-based pathways implicated in PF majorly
include signaling pathways such as TGFb/Smad (36–39), Wnt/
beta-catenin (37, 40–42) and interleukin signaling (43–45).
Other signaling pathways reported in a limited number of
studies include Lrp5/beta-Catenin (46), MAPK (23), Notch
(47), PI3K-AKT-mTOR (48, 49), STAT1 and NF-kappaB (50),
IGF-1 receptor (51), 4-1BB (52), NRG-1/ErbB4 (53) and M-CSF/
M-CSFR (54). Deciphering the molecular mechanisms of
macrophage involved in the development of PF, M2
Frontiers in Immunology | www.frontiersin.org 3
macrophage was shown to promote EMT through the TGFb1/
Smad2 pathway in bleomycin-induced PF mouse model (39).
The PF has been alleviated by pirfenidone through suppressed
Wnt/GSK-3beta/beta-catenin and TGFb1/Smad2/3 signaling
pathways (37), and by neohesperidin through TGFb1/Smad3
inhibition (36); whereas, multiwall carbon nanotubes has been
reported to mediate macrophage activation and PF progression
through induced TGF-beta/Smad signaling pathway (38).

Macrophage M2 promotes myofibroblast differentiation and
is associated with pulmonary fibrogenesis. This process is
mitigated by suppressed Wnt/beta-catenin signaling through
pirfenidone (37), salinomycin administration (40), and
targeted inhibition by PRI-724 (41) and ICG-001 (42). The IL
signaling is implicated in PF by IL-4–mediated M2
polarization with elevated Gab 1/2 docking proteins (43), by
IL-4Ralpha pathway through crystalline silica exposure (45), or
by IL-13 pathway in macrophages induced through sphingosine-
1-phosphate receptor-2 (44). Also, activation of p38 MAPK
signaling pathway mediated through loss of a transcription
factor Forkhead box M1 (FOXM1) in macrophages was shown
to promote PF. Regarding its molecular substance, activation of
p38 MAPK pathway in macrophages was reported with the
production of pro-fibrotic mediators IL1b, IL6, and TNFa that
stimulated fibroblast activation and survival, thus, exacerbating
PF (23). Thus, the interplay between M1/M2 macrophage
phenotypes has been suggested to play a key role in the
development and progression of lung fibrosis (Figure 1).
MICRORNA-BASED REGULATION OF
MACROPHAGE POLARIZATION IN
IMMUNE RESPONSE, INFLAMMATION,
AND FIBROSIS

miRNAs and Their Regulatory Role
Towards Macrophage Phenotypes
MicroRNAs (miRNAs) are transcriptional regulators that
participate in lung inflammatory responses (5, 55) and are also
shown to mediate macrophage polarization. The macrophage
subtypes release a various spectrum of cytokines and chemokines
that are either pro-inflammatory (M1 phenotypes) and
sometimes pro-inflammatory with enhanced tissue destruction,
or wound healing and tissue repair (M2 phenotypes), both of
which are also regulated through miRNAs (Table 1). As an
example, miRNA-regulated macrophage polarization is strongly
related to miRNA‐124, miRNA‐155, and miRNA‐223. Briefly,
higher expression of miRNA‐124 attenuates M1 macrophage,
whereas miRNA‐155 promotes M1 and miRNA‐223 depletion
also produces M1 polarization (56) (Supplementary Table S1).
The Supplementary Table S1 lists a wide spectrum of miRNAs
involved in macrophage polarization along with their target
proteins and their plausible roles in regulating lung fibrosis.

The regulatory roles of microRNA-mediated macrophage
activation and polarization in immune response and
inflammation have been extensively reviewed (57–59).
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This and the following section, therefore, updates the findings of
miRNA-mediated macrophage polarization and modulation of
pro-inflammatory M1 and/or pro-fibrotic M2 phenotypes in
lung disease, in particular, lung fibrosis.

MicroRNA-17, miR-20a, and miR-106a (miR-17/20a/106a)
have been shown to effectively regulate alveolar macrophage
inflammatory responses such as macrophage infiltration,
phagocytosis, and proinflammatory cytokine secretion through
targeting leukocyte signal-regulatory protein-a (SIRPa) in both
in-vitro and in-vivo assays (60). The up-regulation of miR-33 in
alveolar macrophages exhibited the M1 phenotype with elevated
pro-inflammatory cytokines and was demonstrated to promote
granuloma formation in a murine model of chronic
granulomatous disease, resembling human sarcoidosis
pathology, through the suppression of anti-inflammatory lipid
transporters (61). An over-expression of macrophage miR-34a
has been demonstrated to favour pro-inflammatory M1
phenotype and inh ib i t i on o f M2 po lar i za t ion in
lipopolysaccharides (LPS) induced acute lung injury (ALI) in
mice (62). Similarly, miR-155 was shown to be induced during
Frontiers in Immunology | www.frontiersin.org 4
the macrophage inflammatory response and it orchestrated
inflammatory cytokine production in tumour-associated
macrophages (TAM). The pro-inflammatory effect of miR-155
has been indicated to promote fibrosis mediated by cross-
signaling between macrophages and fibroblasts that governed
upregulation of collagen synthesis through TGFb1 signaling
(63). Jaiswal et al., (64) reported overexpression of Let-7c and
miR-99a miRNAs in murine bone marrow-derived macrophages
(BMDMs) to mitigate Angiotensin-II-induced M1 phenotype
activation and to promote M2 phenotype. This inhibition of
miR-99a was further shown to reduce ovalbumin-induced Th2
dominance and alleviate allergic airways inflammation (64).

There have also been reports of miR-124 acting to attenuate
M1 macrophages as a universal regulator of macrophage into the
M2 subtype by decreasing NFkB activity in various subsets of
monocytic cells and tissue-resident macrophages including lung
macrophages (65, 66). The dysregulation of miR-142-5p and
miR-130a-3p was characterised as an important factor governing
the polarization of macrophages with higher levels of M2-like
phenotypic markers and was associated with airway remodelling
FIGURE 1 | M1 macrophage and M2 macrophage polarization during the development of pulmonary fibrosis. *Increased cellular factors include proliferation, a-
smooth muscle actin (a-SMA), matrix factors, collagen, growth factors and cytokines. **Dysregulated genetic factors include upregulated miR-21 and miR-155 and
down-regulated Let-7i, miR-107, mir-126, miR-140 and miR-511. Figure created with BioRender. AIM2, absent in melanoma 2; ARG1, Arginase 1; Fizz1/RETNLB,
resistin like beta; Ym1/Chil3, chitinase-like 3.
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in ovalbumin-sensitized mice (67). Another miRNA, miR-146a
has been reported to modulate macrophage polarization by
inhibiting Notch pathways in RAQ264.7 macrophage cell lines
(68). In this context, we observed an elevated level of miR-146a
in pulmonary sarcoidosis inflammation (69). Concerning
miRNAs involvement in TAM polarization miR-146a-5p, miR-
324-5p, miR-223-3p, miR-223-5p, miR-21, miR-125a, miR-130a,
and miR-155a were characterized as oncogenic miRNA, while,
miR-1207 and miR-320a as a tumour suppressor miRNA in lung
cancer including non-small-cell lung carcinoma (NSCLC) (70).
These reports thus emphasize the important role of miRNAs in
regulating M1/M2 macrophage polarization in lung diseases
in general.

Potential Role of Macrophage-Derived
microRNAs in Pulmonary Fibrosis
The microRNA crosstalk influences epithelial-to-mesenchymal and
fibroblast-to-myofibroblast transitions implicated in process of
macrophage polarization. However, to date, only limited studies
have explored the miRNA-based genetic regulation of macrophage
polarization and its role in lung fibrosis. An overexpression of let-7c
was reported in alveolar macrophages from fibrotic lungs in a
bleomycin-induced mouse model as compared with normal lungs,
and thus, indicated upregulation of let-7c in macrophages to
mitigate M1 phenotype while promoting M2 phenotype
polarization (71). Duru et al., (72) reviewed the miRNA-based
regulation of macrophage polarization with M2 predominant
population in radiation-induced lung fibrosis (RILF) and
characterized miR-21 and miR-155 as pro-fibrotic, while let-7i,
miR-107, mir-126, miR-140, and miR-511 as anti-fibrotic (72). The
IL4 and IL13 induced increased expression of miR-142-5p and
downregulated miR-130a-3p transcripts were reported to regulate
macrophage profibrogenic expression in tissue samples of patients
with IPF (73). The macrophage miR-155 was reported to promote
lipopolysaccharide-induced ALI in mice and rats (74). Similarly,
miR-155−/− in murine lung macrophages and fibroblasts, and in
human IPF lung fibroblasts was implicated in exacerbated
pathogenic PF (75). In another study, miR-140 was reported with
a key protective role against RILF by inhibiting myofibroblast
differentiation and inflammation, and its loss was suggested to
induce lung fibrosis through reprogramming fibroblasts and M2
macrophages (76). The role of non-coding RNAs in modulating
macrophage phenotypic plasticity and functional heterogeneity
among different fibrotic diseases has been recently reviewed (77).
These reports further highlight the plausible role of macrophage-
derived microRNAs in PF.

Macrophage-Derived Exosomal miRNAs
Mediate Pulmonary Fibrosis
Exosomes are cell-derived vesicles produced by several cell types
that function in signaling between cells. Exosomes carry a variety
of different biomolecules, such as cytokines and microRNAs, and
their content may vary from progenitor or target cells. Exosomal
miRNAs have also been implicated in interstitial lung diseases
including pulmonary sarcoidosis (55) and IPF (78). Recently,
interest has also been gained to decipher the role of macrophage-
Frontiers in Immunology | www.frontiersin.org 5
derived exosomal microRNA (miRNA) in lung fibrosis.
Exosomal miRNA-328 from M2 macrophages was shown to
enhance pulmonary interstitial fibroblast proliferation and
promote the progression of PF in a rat model (78). Besides,
macrophage-derived exosomes have been recently suggested to
mitigate PF progression via delivery of antifibrotic miR-142-3p
to alveolar epithelial cells and lung fibroblasts by repressing
transforming growth factor b receptor 1 (TGFb-R1) (79).
Another study demonstrated that miRNAs contained in
alveolar epithelial type-I cells derived-EVs are actively
delivered into alveolar macrophages, subsequently promoting
inflammasome activation, neutrophil recruitment, and M1-
macrophage polarization and thus endorse pro-inflammatory
responses in bacterial lung infection (80). In ALI, young
mesenchymal stem cells-derived extracellular vesicles (MSC-
EVs) showed higher expression of miR-223-5p and lower levels
of miR-127-3p and miR-125b-5p compared with aging MSC-
EVs. Further, inhibition of miR-127-3p and miR-125b-5p in
BMDMs was reported to downregulate M1 and thus, supported
their role in M1 macrophage polarization (81). Besides, MSC-
EVs were reported to mitigate ALI at least partially through the
transfer of miR-27a-3p to alveolar macrophages and promoted
M2 macrophage polarization (34). MiR-27a-3p was also shown
to target NFKB1 and thus, was suggested as a key regulator of M2
macrophage polarization (34). Recently, a study investigated the
potential connections between arsenic and epigenetic changes
that mediate M2 macrophage polarization in the development of
PF and reported arsenite, elevated LncRNA H19, c-Myc, and
Arg1 along with decreased let-7a to be associated with PF in mice
(82). Another recent study in a mouse model reported MSC
−derived exosomal miR−135b to promote M2 polarization of
synovial macrophage by targeting MAPK6, thus mitigating
cartilage injury (83). Thus, evidence supports the role of M2
macrophage-derived exosomal miRNA in pulmonary interstitial
fibroblast proliferation and in promoting the progression of lung
fibrosis. This is further supported by MSC−EVs-derived
miRNAs that are suggested to mediate M2 macrophage
polarization in the development of PF (34). In ALI, young and
aging MSC-EVs harbours differentially expressed miRNAs
associated with M1/M2 macrophage polarization (81).
CONCLUSION

The present minireview summarizes major findings on the role
of macrophage polarization in diseases, in particular, PF. The
non-coding regulatory miRNAs are also discussed in the context
of their modulation of M1/M2 macrophage phenotypes in the
development and progression of IPF. Further, exosomal miRNA
from M2 macrophages favouring pulmonary interstitial
fibroblast proliferation and promoting the progression of PF
are also described.

In summary, the regulation of macrophage polarization by
miRNA is suggested to represent one of the key pathogenetic
factors in the development and progression of PF. Further
research focused on distinct levels of these processes will
August 2021 | Volume 12 | Article 678457
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undoubtedly provide updated information. Apart from detailing
our current theoretical knowledge, it could be translated into
future diagnostic approaches and/or designing novel therapeutic
strategies helping to combat IPF, which despite the
advancements still constitutes a major debilitating disease.
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