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SUMMARY

Morphological profiling with the Cell Painting assay has emerged as a promising method in drug discovery 

research. The assay captures morphological changes across various cellular compartments enabling the 

rapid prediction of compound bioactivity. We present a comprehensive morphological profiling resource us

ing the carefully curated and well-annotated EU-OPENSCREEN Bioactive compounds. The data were gener

ated across four imaging sites with high-throughput confocal microscopes using the Hep G2 as well as the U2 

OS cell lines. We employed an extensive assay optimization process to achieve high data quality across the 

different sites. An analysis of the extracted profiles validates the robustness of the generated data. We used 

this resource to compare the morphological features of the different cell lines. By correlating the profiles with 

overall activity, cellular toxicity, several specific mechanisms of action (MOAs), and protein targets, we 

demonstrate the dataset’s potential for facilitating more extensive exploration of MOAs.

INTRODUCTION

High-throughput morphological profiling of small molecule li

braries, using the Cell Painting assay, has received increasing 

attention in drug discovery research.1–3 Compared to conven

tional high-throughput screening of a single biological target, 

morphological profiling with high content imaging offers the 

advantage of identifying multiple biological activities of small 

chemical compounds simultaneously, promising to substan

tially accelerate the early stage of the drug discovery process. 

Moreover, this method enables to predict toxicity and more 

specifically the mechanism of action (MOA) of drug-like com

pounds at the cellular or subcellular levels in a non-invasive 

manner.4 A typical Cell Painting assay uses six fluorescent 

stains imaged over multiple channels, revealing morphological 

changes upon perturbation of cells in eight major cellular com

partments, namely DNA, cytoplasmic RNA, nucleoli, actin, 

Golgi apparatus, plasma membrane, endoplasmic reticulum, 

and mitochondria.1

To analyze the morphological changes in cells, induced by 

small chemical compounds in these different cellular compart

ments, high dimensional image features need to be extracted 

from the generated images.5–7 In classical Cell Painting analysis, 

hundreds of handcrafted image features are extracted using 

computational tools such as CellProfiler.8 The extracted features 

serve as fingerprints or profiles that quantitatively characterize 

the induced cellular phenotypes. Dimension reduction and clus

tering of the profiles enable the identification of biological activity 

of uncharacterized chemical compounds. These methods have 

been successfully employed in recent years to identify chemical 

probes and drug-like molecules for various biological targets9–12

such as the Sigma 1 receptor antagonist13 and mitotic kinesin in

hibitors,14 as well as for treating SARS-CoV-2 infections.15

For an exhaustive characterization of small molecules and their 

activity, it is crucial that large high-quality data sources exist that 

systematically assay under as many experimental conditions, 

e.g., compound concentrations and cell models, as possible. 

One large data source is the Joint Undertaking for Morphological 
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Profiling (JUMP) Cell Painting Consortium, which has very 

recently published and released a large collection of the Cell 

Painting data using U-2 OS cells stemming from a joint effort of 

various academia and industrial partner sites.16,17 Here, we pre

sent a Cell Painting dataset of the EU-OPENSCREEN Bioactive 

compound set. EU-OPENSCREEN is a European Research Infra

structure Consortium (ERIC) dedicated to accelerating the dis

covery of small molecule compounds for new biological targets 

by providing academic research groups with open-access to 

high-throughput screening technologies.18 EU-OPENSCREEN 

hosts multiple compound collections that contain in total more 

than 100,000 compounds. The largest library is the European 

Chemical Biology Library (ECBL) composed of commercially 

available compounds selected to cover a diverse chemical 

space.19 The Bioactive compound set is part of the Pilot Library 

and consists of 2,464 Bioactive compounds carefully chosen 

for their diverse biological activity, including 681 approved drugs 

and 385 highly selective probes. Thus, this set serves as an ideal 

reference for the Cell Painting assay.

Within this study, we generated multiple Cell Painting datasets 

of the EU-OPENSCREEN Bioactive compound set over four 

different imaging sites, primarily using the Hep G2 cell line and 

for comparison with other datasets in the Cell Painting commu

nity in the U-2 OS cell line. Image acquisition was performed us

ing high throughput confocal microscopes. To validate our 

assay, we performed multiple replicates, which demonstrated 

the high reproducibility and robustness of the method. To facili

tate further research in this field, we have made the data freely 

available via the Cell Painting Gallery,20 which will inspire the 

development of novel computational approaches for identifying 

the biological activity of chemical compounds. Moreover, this 

dataset will serve as an important reference for future high- 

throughput screening based on the larger EU-OPENSCREEN 

collection.

RESULTS

EU-OPENSCREEN Bioactive compound set

The EU-OPENSCREEN Bioactive compounds are a densely 

annotated small compound set that consists of 2,464 com

pounds, with 96% of the compounds having at least a single 

annotated target (Figure 1A). This set is enriched for approved 

drugs, chemical probes, and compounds with known MOA 

(see STAR Methods: bioactive set). In total the set is linked 

to 2,841 different compound targets. Most compounds have 

multiple targets annotated in the literature, with a median 

number of six targets per compound and one compound 

with a maximum of 272 targets annotated, demonstrating 

the capability of small compounds to interact with multiple tar

gets (i.e., polypharmacology, Figure 1B). The set was gener

ated with the intention of a wide proteome coverage and 

therefore the targets range over many different target classes 

(Figure 1C; Table S1) and are involved in many different path

ways (Figure 1D; Table S2). A similarity comparison of the 

compound structure between the EU-OPENSCREEN Bioac

tive compounds as well as the JUMP-CP compounds16 re

vealed that 1,210 compounds are in common between these 

two compound sets (Table S3).

Cell painting assay

To characterize the EU-OPENSCREEN Bioactive compound set 

we employed a Cell Painting assay based on an established pro

tocol.1 The assay was carried out at four different imaging sites 

(FMP - Leibniz-Forschungsinstitut für Molekulare Pharmakolo

gie, Germany; IMTM - Institute of Molecular and Translational 

Medicine; MEDINA - Fundación MEDINA; USC – Universidad 

de Santiago de Compostela, Spain) with the 2,464 compounds 

of the set distributed on seven 384-well plates. The assay was 

performed over four replicates per dataset from the different 

sites. After cell seeding, the cells were grown for 24 h before be

ing incubated for 24 h with the compounds at 10 μM concentra

tion (Figure 2A). DMSO was used as a negative control and refer

ence for the plate normalization. We used tetrandrine and 

nocodazole at 5 μM concentration as positive controls since 

these compounds show a strong phenotypic response in 

different cell lines.

The cells were then fixed and stained with six stains labeling 

different cellular compartments. Imaging acquisition was per

formed using spinning disk confocal systems over nine fields 

per well (Figure 2A). The six cellular stains were then acquired 

in four separate channels (Figure 2B). The assay was performed 

primarily on the Hep G2 cell line generating 387,072 images per 

dataset (Figure 2C). One site (FMP) additionally applied the Cell 

Painting assay with the bioactive set on the U-2 OS cell line 

(Figure 2D), a cell line with many already existing Cell Painting 

datasets.16,21–24 We were able to directly compare our data 

from the Hep G2 cell line with data based on this very wide

spread cell line and will enable the Cell Painting community to 

compare the Cell Painting data from the Bioactive compound 

set with their own datasets.

Overall, we aimed to produce high quality data, increasing 

comparability across sites keeping the experimental conditions 

as consistent as technically feasible. To achieve this, we per

formed an extensive evaluation and validation process. First, 

we selected suitable imaging sites based on submitted pro

posals and validation data, which were quantitatively evaluated 

by two external reviewers (see STAR Methods: Assay optimiza

tion and standardization, Data S1). Further, we optimized the 

protocol to reduce variability across sites. In our experience 

the cell culture as well as staining conditions were responsible 

for most of the variability and thus, we supplied the same cell cul

ture serum, cells and the same lot fluorescent dyes centrally. For 

practical and technical reasons some parameters remained 

different across sites. For instance, the four imaging sites 

employed three different microscopy systems (see STAR 

Methods: image acquisition). Since the same compound dataset 

has been acquired with four replicates, the dataset will provide 

an opportunity to study and develop methods to overcome 

experimental variability during downstream processing.

Extraction of morphological profiles

For analyzing the image data we performed an established 

JUMP-CP CellProfiler based pipeline16 extracting 2,977 hand

crafted image features within single cells based on three cell 

areas (nucleus, cell, cytoplasm). The features based on single 

cells were filtered using a histogram-based outlier selection 

(HBOS),25 as well as missing and infinite values. Single cell 

2 iScience 28, 112445, May 16, 2025 

iScience
Article

ll
OPEN ACCESS



A

D

C

B

Figure 1. EU-OPENSCREEN Bioactive compound set 

(A) Almost all of the 2,464 compounds of the bioactive set have at least a single annotated target. 

(B) Histograms of the number of compounds over the number of targets (bin size of 5, log scale in gray). 

(C) The total number of different compound targets annotated in the compound set was 2,841. These annotated compound targets range over a diverse number 

of target classes based on their GTOPDB annotation. 

(D) The compound targets are also implicated in a diverse range of pathway classes based on their Reactome annotation.
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Figure 2. Cell Painting assay performed on EU-OPENSCREEN Bioactive compound set 

(A) Cell Painting approach using high-throughput confocal imaging. Image of Opera Phenix, credit and © PerkinElmer. 

(B) Four imaging channels with the associated staining labeling different cellular compartments. 

(C) Composite image of the nucleus (Nuc, Cyan), mitochondria (Mito, green) and the actin (Actin, magenta) channels. Individual channels in gray-scale of Hep G2 

cells treated with DMSO are shown; a cluster of cells is shown below. 

(D) Merge of the nucleus (Nuc, Cyan), mitochondria (Mito, green), and the actin (Actin, magenta) channels and the individual channels in gray-scale of U2OS cells 

treated with DMSO. Enlarged single cell cropped close to the center of the field of view is shown below. Note that the individual channels between the different cell 

lines were adjusted using different brightness contrast settings. (C and D) Scale bars in merge panels correspond to 100 μm in the full field of view and 20 μm in 

the crop.
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features were aggregated using a median per well. Heatmaps for 

each plate were plotted as a visual quality control (see QC_Pla

temaps - Zenodo: https://doi.org/10.5281/zenodo.14776021). 

For investigating artifacts that may arise from dispensing cells 

unevenly or uneven cell growth, the cell count per well was 

plotted (‘‘Metadata_Object_Count’’). Typical observed artifacts 

were dispenser stripes, arising from a badly primed dispenser 

cassette. Most plates showed no issues with cell seeding/cell 

growth and only a few plates had an elevated overall cell number.

For artifacts that may arise in the first staining step with live 

cells and the mitotracker staining, the mean intensity of the cyto

plasm segmentation of the Mito channel was used (‘‘Cyto_Inten

sity_MeanIntensity_Mito’’). Typical observed artifacts were rim 

and edge effects, probably due to lower humidity in the outer 

wells during the 48-h cell growth incubation step, which may 

lead to cellular stress conditions. These rim effects in the Mito 

channel were consistently noticeable in the FMP und USC data

sets but were not detected in the MEDINA and IMTM datasets. 

To reduce such effects thermal variation and differences in evap

orations should be kept to a minimum by using for instance 

spacer plates in plate stacks filled with water, additional reser

voirs in the incubator as well as water vapor permeable mem

branes for sealing plates.

For quality control of the second staining step with fixed cells 

using the staining mixture that combines the dyes for the ER, 

Actin, and Nuc channel, following plots were created: the 

mean intensities of the cytoplasm segments for Actin and ER 

channel (‘‘Cyto_Intensity_MeanIntensity_AGP’’ and ‘‘Cyto_in

tensity_MeanIntensity_ER’’). Additionally, based on the segmen

tation of the nuclei, the mean intensities of the Nuc and ER chan

nel was plotted (‘‘Nuc_Intensity_MeanIntensity_DNA’’ and 

‘‘Nuc_Intensity_MeanIntensity_ER’’). Typical artifacts observed 

in the second staining step are slight left-to right or top-down 

plate drifts (i.e., lower or higher intensity in a channel along the 

rows or columns of a plate), likely arising from the reading direc

tion of the microscope. These heatmaps in general indicate no 

plate-based artifacts, with rare cases of drift in the AGP channel. 

Additionally, calculating the median of the four replicates for 

most channels effectively reduces the majority of these artifacts.

Analyzing the raw cell numbers per well revealed that most of 

the wells show an increase of cell number from the initial number 

of seeded cells. A small number of wells were exhibiting a reduc

tion in cell number, indicating severe cytotoxic effects of some 

compounds in the set at the given concentration (Figure 3A). 

The median cell number, acquired from the 9 fields per well 

and after cell filtering, was varying between the different imaging 

sites from 691 to 1,659 cells (Figure 3A; Table 1). The pairwise 

correlation of the cell number per compound across the different 

imaging sites confirms that the effect of the compounds on the 

cell number follows a similar trend across the sites i.e., com

pounds high toxicity show high toxicity in both compared sites 

(Figure S1).

We also visualized the cell numbers of the control wells, 

showing the expected reduction of average cell numbers in the 

positive controls compared to the negative controls, with noco

dazole showing a larger overall reduction in cell number than tet

randrine in both cell lines (Figure,3B). Of note is the more pro

nounced reduction in the overall cell number at the given 

concentration in the U-2 OS dataset (Figure 3B: FMP U-2 OS), 

which was much more pronounced as compared to the Hep 

G2 cells from all imaging sites (Figure 3B: Hep G2). The potent 

cytotoxic effect of nocodazole in U-2 OS cells was also evident 

through the increased number of dead cells, very small and 

round cells with small and bright nucleus, in U-2 OS cells 

(Table 2; Figure S2B) as compared to Hep G2 cells (Table 2; 

Figure S3B).

For further analysis we reduced the total 2,977 features to 

around 700 features per dataset (Table S4) based on established 

feature reduction approaches.1,5,16,26 Feature reduction was 

performed by removing features with missing values, low vari

ance, outlier features and most importantly reducing highly 

correlated features. We observed that the adopted feature se

lection, generated a feature set that was balanced across 

various feature types and cellular areas (see Supplementary_ 

Material - Zenodo: https://doi.org/10.5281/zenodo.14776021). 

For a qualitative assessment, we visualized the median 

consensus morphological profiles over the replicates per plate 

for the positive controls. As the positive controls are present 

across the seven plates of the Cell Painting assay, the visualiza

tion showed that the selected features were highly consistent 

across the different plates and produced distinct patterns for 

the two different control compounds (Figures S4A and S4B). 

Consistency across replicates in each plate was further 

confirmed quantitatively by comparing the correlation of the con

trols over replicates over each plate (see QC_Correlation_Con

trols - Zenodo: https://doi.org/10.5281/zenodo.14776021).

Toxicity, activity, and reproducibility of imaged 

compounds

We then proceeded with a general characterization of the data

sets and the compound set by assessing the overall activity, 

cytotoxicity, as well as the reproducibility of the compound pro

files. Highly toxic compounds, albeit bioactive, usually show 

nonspecific MOAs.27 Conversely, compounds with very low ac

tivity, at the given concentration in the specific cell line, may lead 

to unspecific morphological profiles. Toxicity was assessed 

based on cell number, where compounds were defined as acting 

toxic if they reduced the cell number to below 2.5 standard de

viations of the median cell number of the entire dataset. Here, 

we show that only 3–7% of compounds in the bioactive set 

had a toxic effect on the cells, with Hep G2 showing a slightly 

higher resistance against the toxic effects of compounds at the 

used concentration (Table 1).

For assessing the activity of compounds, we used the induc

tion score,23 defining compounds exhibiting lower activity in 

the given cell line at the used concentration when less than 5% 

of their features were positively or negatively deviating 

compared to the DMSO negative control. Using this induction 

score 28% of the total number of compounds in the case of 

the U-2 OS dataset show lower activity. In the case of the Hep 

G2 datasets the z-scores were in general much lower compared 

to the U-2 OS cells. This difference is also apparent when 

applying the same induction threshold, which describes 61– 

72% of compounds in the Hep G2 cell lines as having lower ac

tivity (Table 1). The fact that the Hep G2 cell line shows a much 

lower response than other cell lines has been recently 
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Figure 3. Quantitative quality assessment of dataset and comparison across cell lines 

(A) Raw cell counts over all plates and wells in U-2 OS and Hep G2 from four different sites. 

(B) Cell counts in negative and positive controls in U-2 OS and Hep G2 cells from four imaging sites. 

(C) Percent replicating plotted against percent matching of all presented datasets. 

(D) Percent matching across datasets versus percent pairing of all Hep G2 datasets. 

(E) 2D UMAP for assessing batch effects of the datasets from the FMP, IMTM, MEDI and USC. Datasets were combined after normalization. Feature reduction 

was performed on combined dataset. 

(B) Data are represented as boxplots with the middle line of the plot corresponding to the median. The lower end of the box to the 1st quartile and the upper end to 

the 3rd quartile range of the data i.e., the interquartile range. The upper and lower whiskers correspond to the upper and lower 1.5 times the interquartile range with 

the dots corresponding to the outliers beyond this range.
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described.28 However, one must note that the induction 

threshold applied here to assess activity was optimized for U-2 

OS cells using a handpicked feature set.23 In this work, we aimed 

to specifically compare the Hep G2 datasets to the U-2 OS data

set and thus did not change this threshold. Other analysis ap

proaches might require adjusting such an analysis to the specific 

cell lines and feature set and used concentration.

To assess the quality of the datasets quantitatively we 

computed the percentage of replicating as well as matching 

compounds within the datasets after applying toxicity and induc

tion filters. This analysis revealed that the morphological profiles 

are highly replicating in both cell lines over the different imaging 

sites with datasets showing a percent replicating from 84 to 94% 

(Figures 3C and S5A–S5E). Thus, only 1–11% of compounds 

exhibit non-replicating profiles from the original 2467 com

pounds before toxicity and induction filter (Table 1). The percent 

matching scores ranged from 12 to 41% (Figures 3C and S5F– 

S5J). The percent replicating as well as percent matching scores 

of these datasets are in line with the published scores of compa

rable datasets.17

For further quality control of the dataset, we also filtered the 

non-replicating compounds and performed dimensionality 

reduction using Uniform Manifold Approximation and Projection 

(UMAP).29 This allows the visual detection of any batch effects 

within the datasets from each imaging site.30 Indeed, the U-2 

OS data produced at the FMP imaging site exhibits some batch 

effects (Figures S6A and S6B). The Hep G2 datasets from each 

of the four imaging sites show no apparent batch effects using 

this visualization (Figures S6C, S6D, and S7A–S7F).

A key challenge for collecting large datasets across different 

laboratories is combining datasets due to batch effects across 

imaging sites.30 These are the results of slight variations in the 

application of the protocol and differences in technical equip

ment such as different microscopes. To assess the impact of 

batch effects across sites we directly compared the Hep G2 da

tasets across the different imaging sites (Figure 3D). We per

formed a modified percent replicating score that we defined 

percent pairing as the comparison of the same compounds 

only involved a pairwise comparison across the datasets using 

the consensus profiles and to differentiate it from technical repli

cation and other metrics such as percent matching.31 We also 

applied percent matching across modalities metric.17 This re

vealed percent pairing scores ranging from 54 to 68% 

(Figures S8A–S8F) as well as percent matching across datasets 

ranging from 46 to 70% (Figures 3D and S8G–S8L). Although 

more than half of compounds yield highly similar profiles, a direct 

combination of such data cannot be achieved without further 

processing (Figure S3E). Further standardization of such data 

will necessitate an increase in automation as well as increased 

standardization of imaging equipment and the image acquisi

tion.32,33 Additionally, the development and application of batch 

correction methods will also be vital for working with large data

sets generated by multiple laboratories.30

Comparison of Hep G2 and U-2 OS

We further analyzed the available datasets by comparing the U-2 

OS and the Hep G2 cell lines. For a direct comparison, we focus 

on biologically relevant differences between these cell lines. We 

thus compare the data from one imaging site to exclude con

founding factors that arise from any technical differences (e.g., 

microscopy, precise staining protocols and devices). Directly 

comparing the features after the same feature extraction pipeline 

was applied to the data using independent feature reduction re

vealed that most features are consistent across the different cell 

lines (Figure 4A). The morphological profiles of the 428 overlap

ping features in the positive controls revealed that some features 

exhibit consistent responses across cell types, while many 

others displayed varying responses (Figures S4C and S4D), in 

line with previous findings in the literature.34

We have already noted that Hep G2 cells exhibited greater 

resistance to toxic compounds at the given concentration 

when compared to U-2 OS cells (Figures 3A and 3B; Tables 1

and 2). We subsequently investigated the extent of overlap be

tween toxic compounds in the different cell lines and found 

that 78% of toxic compounds in Hep G2 cells overlapped with 

compounds defined as toxic in U-2 OS cells (Figure 4B). 

Conversely, a higher response to the compounds was observed 

in the U-2 OS cell lines. According to the induction filter, more 

than 60% of the compounds displayed lower activity in the 

Hep G2 cell line (Table 1). Additionally, we observed that 87% 

Table 1. Number of compounds per processing step in each dataset

Site Cell line

Median 

Cell count

MAD cell 

count All cpds Toxic % toxic

low 

active

% low 

active

Non 

replicating

% non- 

replicating

After 

filtering

FMP U-2 OS 691 91 2,467 177 7% 690 28% 261 11% 1,339

FMP Hep G2 863 180 2,467 103 4% 1,503 61% 72 3% 789

IMTM Hep G2 1,293 178 2,467 118 5% 1,673 68% 89 4% 587

MEDINA Hep G2 1,659 347 2,467 80 3% 1,542 63% 104 4% 741

USC Hep G2 1,455 347 2,467 92 4% 1,768 72% 34 1% 573

Table 2. Analysis of dead cells in controls of the FMP U-2 OS and 

Hep G2 data

Cell line Treatment # dead cells # total cells % dead cells

U-2 OS DMSO 969 444,867 0.2

U-2 OS Nocodazole 1,516 8,206 18.5

U-2 OS Tetrandrine 86 16,699 0.5

Hep G2 DMSO 1,003 922,096 0.1

Hep G2 Nocodazole 517 48,215 1.1

Hep G2 Tetrandrine 309 32,198 1.0
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of compounds with low activity in U-2 OS also had low activity in 

the Hep G2 cell line (Figure 4C). In summary, it appears that the 

Hep G2 cell line exhibits a smaller morphological response to the 

same compounds at the given concentration of 10μM, encom

passing both their overall activity and toxicity.

Overall, the datasets show a high technical replication after 

filtering highly toxic and lower active compounds (Figure 3C; 

Table 1). When comparing the non-replicating compounds in 

both datasets we find as expected that they do not share a large 

overlap, as this will be determined by random technical variability 

(Figure 4D). We further made a direct quantitative comparison of 

the profiles across 564 non-toxic and highly active compounds 

in the different cell lines. To this end we used a variation of the 

percent replicating compounds, which we term percent pairing 

computed on the consensus profiles of each dataset.31 We 

found that more than 20% of the compounds compared have 

a correlating profile elevated from random samples in the data

set (Figures 4E and S9A; Table S5). Similar to the result from 

the feature space comparison across sites, the different data

sets can be easily separated when visualizing them using 

UMAPs (Figure S9B).

Analysis of morphological profiles

To visualize the wealth of data in the extracted profiles, we per

formed dimensionality reduction using UMAP. For a description 

of the entire datasets, we only filtered the datasets for the non- 

replicating compounds, including the toxic and low active com

pounds. We then proceeded to map the control compounds 

onto these visualizations (Figures S10A–S10F). We further pro

jected the toxic and low active compounds as well one basic 

MOA based on compounds having tubulin as an annotated 

target onto these feature maps (Figures 5A–5F).

The visualization based on the U-2 OS cells reveals that toxic 

compounds are spread over a large part of the feature space. 

Toxic compounds are closely associated with both positive con

trols in particular with nocodazole in U-2 OS (Figure 5A). This 

observation confirms the toxic effect of nocodazole previously 

observed based on the cell numbers (Figure 3B; Table 2). For 

the Hep G2 cell line we can see that the overall smaller number 

of toxic compounds are located over a smaller area. In contrast 

to the result in the U-2 OS cells, the positive control nocodazole 

is not associated with any toxic compounds and forms a sepa

rate cluster (Figure 5B).

A

D E

CB

Figure 4. Comparison across cell lines based on FMP datasets 

(A) Number of image features after feature reduction and feature overlap between U-2 OS and Hep G2 cells. 

(B) The number of toxic compounds and overlap between different cell types. 

(C) Number of compounds that did not pass the induction filter (lower active compounds) and the overlap between U-2 OS and Hep G2 cells. 

(D) Number of non-replicating compounds and overlap between different cell lines. 

(E) Percent pairing of 564 non-toxic and highly active compounds across U-2 OS and Hep G2 datasets from the FMP imaging site compared over 427 overlapping 

features.
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The negative control DMSO, is associated with low active 

compounds, with some compounds clustering closer to DMSO 

and many others spreading across a wider feature space in 

both cell lines (Figures 5C and 5D). This observation may suggest 

the presence of two distinct subsets of low-activity compounds: 

those with no activity and those exhibiting only low levels of ac

tivity. However, it is important to state not to over interpret UMAP 

visualizations as dimensionality reduction such as UMAPs are 

known to not necessarily preserve global structure in the data.35

Finally, in U-2 OS cells compounds with at least one target an

notated against tubulin are closely associated with the positive 

control nocodazole (Figures 5E and S11A; Table S6) and com

pounds labeled as acting toxic at the tested concentration 

(Figures 5A and S11B). While the toxicity of compounds acting 

against tubulin is not unexpected,36 many other compounds in 

this specific cluster might not actually act against tubulin as se

vere cytotoxicity produces similar strongly correlating morphol

ogies via diverse mechanisms that are not associated with spe

cific MOAs (Table 2).27 Thus, in the case of U-2 OS cells at the 

tested concentrations it is therefore likely that the morphological 

profiles pick up on the very distinct morphology of dead or dying 

cells. It is important to note that the observed potential clusters 

constitute a hypothesis of MOA and require further experimental 

validation for a determination of their true MOA. In Hep G2 cells 

the compounds that are annotated with an MOA against tubulin 

fall also close to nocodazole (Figures 5F and S11C). In fact, all 

compounds of this cluster are directly implicated with tubulin 

or are published as tubulin inhibitors (Table S7). In contrast to 

the results in the U-2 OS cells no compounds in this cluster are 

annotated as acting toxic (Figures 5B and S11D). This indicates 

that at the tested concentration in Hep G2 cells the compounds 

in the cluster around nocodazole are truly associated with an 

MOA against tubulin rather than a general cytotoxic phenotype. 

This highlights the concentration dependent effect of 

A

D

E

F

C

B

Figure 5. Visualization of morphological feature space based on FMP datasets 

Visualizations of morphological feature space using UMAP based on U-2 OS and Hep G2 cells after feature reduction and filtering of non-reproducible com

pounds. The location of the controls (DMSO, tetrandrine and nocodazole) are labeled using a dashed circle. 

(A and B) Magenta color label indicate compounds identified as toxic in U-2 OS (A) and Hep G2 cells (B). 

(C and D) Blue color label annotates compounds with low activity in in U-2 OS (C) and Hep G2 cells (D). 

(E and F) Green label for compounds annotated for tubulin as target in U-2 OS (E) and Hep G2 cells (F).
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compounds and their capacity for unspecific or off target effects 

that could be cell line specific.

Visualization of the feature space of the Hep G2 datasets from 

the other imaging sites, reveal that the relationship between the 

control compounds and different labeled compound classes is 

preserved, while the overall structure of the feature space is 

distinct between each imaging site (Figures S12A–S12I).

Analysis of specific features using cellular senescence 

as example

Alternatively, to the analysis of the entire feature space using un

supervised machine learning we can also use specific features 

for measuring distinct cellular phenomena, such as cellular 

senescence. Cellular senescence is an arrest in the cell cycle 

with cells entering a stage without cell division.37,38 The morpho

logical hallmarks are increased cell and nuclear size39 with 

abnormal nuclear morphology, in particular a decrease in density 

of the DAPI signal.40 We thus can use the intensity nucleus as 

well as the cell area measurements as a robust readout of cellular 

senescence. With this we can show that compounds known to 

induce cellular senescence41–44 indeed have increased cell 

size combined with a decrease in nuclear intensity in Hep G2 

cells and to a lower extent in U-2 cells (Figures 6A and 6B).

This information can be also combined with analysis such as 

the visualization of the feature space using UMAPs. This reveals 

that some of the compounds associated with cellular senes

cence are closely associated with each other in the larger feature 

space (Figure 6C). Further annotating the compounds with 

senescence related features such as elevated cell area and 

reduced nuclear intensity (Figure 6D) as well as reduced cell 

number (Figure 6E) reveals further compounds that are clus

tering with these compounds as well as show similar selected 

A

D EC

B

Figure 6. Assessment of cellular senescence using morphological profiling 

(A and B) Assessment of specific parameters indicative of cellular senescence based on U2 OS (A) and Hep G2 cells (B). 

(C–E) UMAP based on the FMP HepG2 dataset annotated for compounds associated with cellular senescence (C), senescence related features (cell area above Z 

score of 5 and nuclear intensity below Z score of 5 (D), as well as cell number bins (0–300, 301–600, 601–900 and 901–1300) (E).
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feature responses (Figures 6D and 6E). Further analysis of eleven 

compounds that are closely associated with Ciclopirox 

(Table S8)42 show that two compounds namely triapine45 and mi

toxantrone46 are directly implicated in cellular senescence. 

Further, three compounds such as SP2509,47 AHPN,48 and teni

poside49 are indirectly implicated with cellular senescence via 

senescence related pathways.

DISCUSSION

We presented here a comprehensive Cell Painting dataset based 

on the EU-OPENSCREEN Bioactive compound set. The data 

were acquired from four different imaging sites and using two 

different cell lines. The advantage of this well characterized com

pound set lies in the diversity of selected compounds in terms of 

their chemical space, as well as well-annotated biological ef

fects, including MOAs and targets. Such comprehensive annota

tion should not only facilitate downstream analysis and applica

tions, such as MOA identification through unsupervised 

techniques (e.g., clustering) and other machine learning ap

proaches,50–53 but more importantly, it also serves as a crucial 

reference for future morphological characterization of unknown 

compounds.

Our datasets have been generated with a full set of replicates 

across multiple imaging sites in three European countries. The 

data generation was preceded by an extensive selection, valida

tion, and protocol optimization process toward establishing 

common processes across these different laboratories. Care 

was taken to standardize particularly on cell culture material. A 

systematic comparison revealed that these datasets exhibit 

high reproducibility and quality within the data produced at 

each imaging site, comparable to other published datasets.17,54

We envision that this dataset will not only be useful for assessing 

the influence of different technical confounding factors on the 

morphological profiles but can also be effectively used to 

develop methods for normalizing datasets acquired from 

different imaging sites. The knowledge gained will be important 

for developing strategies to better merge and analyze data 

from multiple sources, which is currently a major challenge in 

the field.30

The dataset is focusing primarily on the Hep G2 cell line, which 

is an established cellular model in high throughput screening.55

Hep G2 is a liver cancer cell line and, thus, aside from its rele

vance for liver diseases it is highly relevant as a cellular model 

for studying the toxic effect of small molecule compounds.56,57

To allow a comparison of our Cell Painting approach with other 

existing datasets, we further generated a dataset based on the 

U-2 OS cell line, as many datasets in the community have 

been generated using this cell line. We provide qualitative and 

quantitative comparisons between the morphological effects of 

the compounds on the different cell lines (Figures 4, 5, and 6).

We found that the Hep G2 cell line is overall less sensitive to 

toxic effects of compounds compared to U-2 OS at the relatively 

high used concentration of 10 μM for the tested compounds and 

5 μM for the positive controls nocodazole and tetrandrine 

(Tables 1 and 2; Figure 4B). Important to note is that toxicity 

has been assessed based on the overall cell number per well 

and does not reflect a comprehensive assessment of toxicity. 

In addition, we have observed that the tested compounds at 

the given concentration show overall a smaller morphological 

response in Hep G2 (Figure 4C). Furthermore, the cell line due 

to its cellular morphology, particularly its compact clustered 

growth, can pose a challenge for image analysis and particularly 

feature extraction. This in part could also explain the observed 

lower overall activity of the tested Bioactive compounds at the 

used concentration.28

When visualizing the feature space using UMAPs, we were 

able to delineate in U-2 OS cells compounds annotated as 

tubulin modulators— closely associated with the positive control 

nocodazole, a known disruptor of microtubule assembly/disas

sembly58 (Figures 5E and S11A)— that were also associated 

with many toxic compounds (Figures 5A and S11B). Interest

ingly, in the same analysis, tubulin modulators in Hep G2, also 

closely associated with nocodazole (Figures 5F and S11C), 

showed no association with toxic compounds (Figures 5B and 

S11D). This indicates that in U-2 OS, the compounds at the given 

concentration show a profile associated with toxicity rather than 

a specific MOA. This highlights that small chemical compounds 

can produce varying effects due to MOA, polypharmacology, or 

off targets across different cell lines, and concentrations and em

phasizes the need to perform Cell Painting in multiple cell lines 

and multiple concentrations for a more comprehensive and 

robust characterization. Finally, it underscores the potential of 

unbiased approaches such as Cell Painting to be used to 

exclude false positives. This is particularly important as the per

formance of supervised and semi-supervised machine learning 

approaches are highly dependent on accurate label information 

of their training data.53

The EU-OPENSCREEN Bioactive compound set is part of a 

much larger compound collection, currently containing more 

than 100,000 compounds. The largest library of this collection 

is the ECBL, an open-source compound library based on 

commercially available compounds designed to cover a wide 

and diverse chemical space. The compounds within the ECBL 

are continuously characterized for their bioactivity. Furthermore, 

EU-OPENSCREEN is collecting novel compounds synthesized 

from academic researchers from around the world in the Euro

pean Academic Compound Library (EACL). Currently, this Cell 

Painting consortium is applying the presented Cell Painting 

approach to both the ECBL as well as the EACL. On the one 

hand, the presented dataset based on the Bioactive compounds 

served as an important milestone to the consortium to validate 

the approach and the feasibility to apply it to a much larger com

pound set. On the other hand, the very well characterized Bioac

tive dataset will serve as an important foundation and reference 

map for discovery of novel compound properties and MOAs 

within the ECBL and EACL.

Finally, the Cell Painting project is part of a much larger effort 

for a comprehensive characterization of the provided com

pounds based on the EU-OPENSCREEN Bioprofiling project. 

Here, general physico-chemical properties such as solubility, 

light absorbance, and fluorescence as well as biological proper

ties such as cell viability, anti-bacterial, and anti-fungal are 

tested using common assay panels. The data produced by 

Cell Painting and the wider Bioprofiling project will be provided 

open source to the scientific community in public data 
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repositories such as the Cell Painting Gallery20 and Bioimage 

Archive59 with the morphological profiles and other numeric 

data fully integrated in dedicated databases such as the Euro

pean chemical biology database (ECBD).60 These data will pro

vide a rich source for powerful computational approaches61 that 

promise to unlock the hidden potential of many small chemical 

compounds and thereby will accelerate early drug discovery.

Limitations of the study

Morphological profiling using the Cell Painting assay has shown 

great promise in the prediction of the bioactivity of compounds. 

The assay has been shown to be robust and yields highly repro

ducible profiles. This study has further demonstrated that data 

acquired using the same compounds from different imaging 

sites produce highly similar profiles and, most importantly, very 

similar downstream predictions of bioactivity. However, we 

have also shown that the profiles are not directly comparable be

tween imaging sites. Further work is required to optimize and 

standardize the data acquisition and further development is 

necessary for creating computational methods for aligning the 

outputs of different laboratories.

As shown in this study, the bioactivity of compounds can be 

dependent on the used cell line with the bioactivity exhibiting dif

ference between the two tested cell lines U-2 OS and Hep G2. A 

further important aspect is the concentration of the compounds. 

In this study, the tested compounds were applied at a concentra

tion of 10 μM and the positive controls nocodazole and tetran

drine at a concentration of 5 μM. This limits the extracted infor

mation from this dataset; in particular, in Hep G2 at the tested 

concentration, many compounds show lower activity. Further 

screens testing multiple concentrations will be beneficial to fully 

resolve the bioactivity of compounds.

The prediction of mechanism of action is still a technically 

challenging process. The development and application of new 

machine learning and deep learning–based prediction models 

promise to accelerate this process. Finally, the predictions of 

bioactivity for each compound represent a hypothesis. Further 

orthogonal analysis and/or follow up experimental studies are 

required to validate these results.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for data and code should be directed to the 

lead contact, Christopher Schmied (schmied@fmp-berlin.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data

• Original images have been deposited at the Cell Painting Gallery20 as 

cpg0036-EU-OS-bioactives and are publicly available as of date of 

the publication at Cell Painting Gallery: https://cellpainting-gallery.s3. 

amazonaws.com/index.html#cpg0036-EU-OS-bioactives/.

• Aggregated profiles have been deposited at Zenodo and are publicly 

available as of the date of publication at Zenodo: https://doi.org/10. 

5281/zenodo.14776021.

• Processed profiles have been deposited at Zenodo and are publicly 

available as of the date of publication at Zenodo: https://doi.org/10. 

5281/zenodo.14776021.

• Annotations for the EU-OPENSCREEN Bioactive compound set are 

available via the Probes & Drugs portal62: https://www.probes-drugs. 

org/compounds/standardized#compoundset=353@AND.

Code

• All original code has been deposited at Github and is publicly available 

at Github: https://github.com/schmiedc/EU-OS_bioactives as of the 

date of this publication.

• All original code for data analysis has been also deposited with the 

exact version used, inputs, and outputs are available at Zenodo and 

are publicly available as of the date of publication at Zenodo: https:// 

doi.org/10.5281/zenodo.14776021.

Additional information

• Quality control plots have been deposited at Zenodo and are publicly 

available as of the date of publication at Zenodo: https://doi.org/10. 

5281/zenodo.14776021.

• All plots for figures have been deposited at Zenodo and are publicly 

available as of the date of publication at Zenodo: https://doi.org/10. 

5281/zenodo.14776021.

• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Bioactives compound library EU-OPENSCREEN Probes & drugs: https://www.probes-drugs.org/compounds/ 

standardized#compoundset=353@AND

Hoechst 33342 ThermoFisher Scientific H3570

Concanavalin A Alexa Fluor 488 ThermoFisher Scientific C11252

Wheat Germ Agglutinin Alexa Fluor 555 ThermoFisher Scientific W32464

Phalloidin Alexa Fluor 568 ThermoFisher Scientific A12380

MitoTracker Deep Red FM ThermoFisher Scientific M22426

SYTO 14 ThermoFisher Scientific S7576

Deposited data

Original images: cpg0036-EU-OS-bioactives This study Cell Painting Gallery: https://cellpainting-gallery.s3. 

amazonaws.com/index.html#cpg0036-EU-OS-bioactives/

Aggregated profiles This study Zenodo: https://doi.org/10.5281/zenodo.14776021

Processed profiles This study Zenodo: https://doi.org/10.5281/zenodo.14776021

Annotations for the EU-OPENSCREEN 

Bioactive Compound Set

Skuta et al.62 Probes & Drugs: https://www.probes-drugs.org/compounds/ 

standardized#compoundset=353@AND

Quality control plots This study Zenodo: https://doi.org/10.5281/zenodo.14776021

Plots for figures This study Zenodo: https://doi.org/10.5281/zenodo.14776021

JUMP-CP compounds ID Chandrasekaran et al.16 Github: https://github.com/jump-cellpainting/datasets/ 

blob/main/metadata/compound.csv.gz

Annotations from the Broad Drug 

Repurposing hub

Corsello et al.63 https://repo-hub.broadinstitute.org/ 

repurposing#download-data

Experimental models: Cell lines

Human: Hep G2 cells ATTC HB-8065

Human: U-2 OS cells DSMZ ACC 785

Software and algorithms

Analysis code This study Github: https://github.com/schmiedc/EU-OS_bioactives

Exact version of analysis code 

with inputs and outputs

This study Zenodo: https://doi.org/10.5281/zenodo.14776021

CellProfiler version 4.1.3 Stirling et al.8 https://cellprofiler.org/previous-releases

JUMP analysis pipeline version 3 Chandrasekaran et al.16 Github: https://github.com/broadinstitute/imaging-platform- 

pipelines/tree/master/JUMP_production

HBOS filter in pyod version 1.0.9 Rezvani, Bigverdi, 

and Rohban,25 Zhao, 

Nasrullah and Li64

https://pyod.readthedocs.io/en/latest/index.html

python version 3.9.16 Rossum et al.65 N/A

pycytominer version 0.2.0 Serrano et al.26 https://github.com/cytomining/pycytominer

Precent replicating score Way et al.31 N/A

Percent matching Cimini et al.17 Github: https://github.com/carpenter-singh-lab/2023_ 

Cimini_NatureProtocols/blob/main/README.md

Percent matching across modality Cimini et al.17 Github: https://github.com/carpenter-singh-lab/2023_ 

Cimini_NatureProtocols/blob/main/README.md

Induction filter Christoforow et al.23 N/A

KNIME version 5.1.0 Berthold et al.66 www.knime.com

R version 4.3.1 R Core Team67 https://www.r-project.org/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Hep G2 cells (ATCC, HB-8065) were cultured in Roswell Park Memorial Institute Medium (RPMI 1640, Gibco, 61870044) supple

mented with 10% (v/v) fetal bovine serum (Sigma Aldrich, S0615). U-2 OS cells (DSMZ, ACC785) were cultured in Dulbecco’s Min

imum Essential Medium (DMEM, Gibco, 61965026) also supplemented with 10% FBS. The cell lines were tested for Mycoplasma 

using a luminescence-based MycoAlert kit (Lonza, LT07-418) and maintained at 37◦C under 5% CO2. When cells reached a conflu

ence of 70–80%, cells were washed with DPBS (Gibco, 14190250), dissociated with Trypsin-EDTA, 0.05% (Gibco; 25300025) and 

reseeded into a new cell culture flask with fresh complete medium or seeded for experiments.

Cell seeding

Hep G2 and U-2 OS cells are counted and seeded into 384 well plates (PhenoPlate 384-well, PerkinElmer, 6057328) using a Biotek or 

Multidrop microplate dispenser. Cells are seeded in a volume of 40 μL per well with 2000 cells/well and 700 cells/well, respectively 

and kept at room temperature for at least 30 min to aid homogeneous spreading. Plates were incubated for 24 h at 37◦C at 5% CO2 

atmosphere to allow for cell attachment and propagation. Compounds were transferred from library plates to cell plates using Echo 

650 acoustic dispenser or Biomek I7 liquid handler. Plates were incubated for another 24 h at 37◦C at 5% CO2 atmosphere.

METHOD DETAILS

Bioactive Set

The EU-OPENSCREEN Bioactive Compound Set comprises 2,464 compounds selected utilizing data from the Probes & Drugs Portal 

(P&D)70 ver. 07.2018.62 P&D is a hub for the integration of high-quality bioactive compound sets with a focus on chemical probes and 

drugs. The set was created by the combination of manually selected high-quality chemical tools, such as chemical probes from the 

Structural Genomics Consortium [Structural Genomics Consortium, https://www.thesgc.org/] or Chemical probes portal,71 and an 

automatically generated set of, predominantly, target-selective compounds (prioritizing such with known mechanism of action), in order 

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R ggplot2 package version 3.4.3 Wickham68 https://ggplot2.tidyverse.org/

Uniform Manifold Approximation 

and Projections

McInnes et al.29 https://umap-learn.readthedocs.io/en/latest/

Fiji Schindelin et al.69 https://fiji.sc/

Other

PhenoPlate 384-well Revvity Cat# 6057308

Opera Phenix Perkin Elmer (now Revvity) https://www.revvity.com/de-en/category/high- 

content-screening-instruments

Operetta CLS Perkin Elmer (now Revvity) https://www.revvity.com/de-en/category/ 

high-content-screening-instruments

Yokogawa CV8000 Yokogawa https://www.yokogawa.com/de/solutions/ 

products-and-services/life-science/high- 

content-analysis/cv8000/

BioTek EL406 or 405TS BioTek (now Agilent) https://www.agilent.com/en/product/ 

microplate-instrumentation/automated-liquid- 

dispensing-handling/automated-microplate- 

washers-dispensers

Multidrop ThermoFisher https://www.thermofisher.com/de/en/home/life- 

science/lab-equipment/microplate-instruments/ 

multidrop-dispensers.html

Blue Washer BlueCatBio https://www.bluecatbio.com/products/bluewasher/

Integra VIAFLO 384 Integra https://www.integra-biosciences.com/global/en/ 

electronic-pipettes/viaflo-96-viaflo-384

CERTUS FLEX liquid dispenser Fritz Gyger AG https://www.fgyger.ch/certus-flex/certus-flex- 

features-2/?lang=en

ECHO 550 or 650 Beckman-Coulter https://www.beckman.de/liquid-handlers/echo- 

acoustic-liquid-handlers

Biomek i7 Beckman-Coulter https://www.beckman.de/liquid-handlers/biomek-i7
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to achieve wide proteome coverage. The EU-OPENSCREEN Bioactive Set contains 385 compounds labeled as chemical probes and 

681 as approved drugs. It is also a part of the P&D compound set list (probes-drugs.org/compoundsets) and therefore, can be ac

cessed/worked with at P&D (Probes & Drugs: https://www.probes-drugs.org/compounds/standardized#compoundset=353@AND). 

The full list of compounds with basic annotations is a part of the supplementary material (Table S9).

Compound transfer

The EU-OPENSCREEN Bioactives Compound Set comprises seven 384 well plates with randomly distributed compounds located in 

column 1–22. Controls are located in column 23 and 24, which include DMSO (0.1%) as vehicle control as well as Nocodazole (5 μM) 

and Tetrandrine (5 μM) as reproducibility control. The concentration of Tetrandrine was adjusted based on cell viability data from the 

different imaging sites over different concentrations. 5μM was selected for Tetrandrine as the concentration for the control, as it pro

vides the strongest profile with the lowest possible toxicity for all partner sites (Viability >0.4). Nocodazole is cytostatic (but not neces

sarily toxic) in the whole concentration range and was therefore adjusted to the concentration of Tetrandrine. Compound screen was 

performed at 10 μM in four replicates. For the replicates we used a new independent cell seeding event (biological replicate).

Cell Painting

The Cell Painting staining protocol is based on Bray et al. 20161 with minor modifications. The protocol was adjusted by each site 

according to the available equipment (Table S10). In general, the medium was first aspirated from the plates to a residual volume 

of 10 μL. Subsequently 30 μL of MitoTracker (Invitrogen, M22426) solution in pre-warmed medium were added to the cells with a final 

concentration of 500 nM and incubated for 30 min at 37◦C. For fixation, the MitoTracker solution was removed and replaced with 

30 μL paraformaldehyde (4%, Roth, 0335) and incubated in the dark at room temperature (RT) for 20 min. After fixation, cells 

were washed with 70μL PBS and permeabilized by adding 30 μL of 0.1% (v/v) Triton X-100/PBS (Sigma Aldrich, T8787) solution 

to each well for 20 min at RT. Triton X-100 was removed followed by two washes with 70 μL PBS. Cells were then stained for 

30 min at RT in the dark with of the staining solution containing HOECHST 33342 (Invitrogen, H3570), SYTO14 green (Invitrogen, 

S7576), Concanavalin A/Alexa Fluor 488 (Invitrogen, C11252), Wheat Germ Agglutinin (WGA)/Alexa Fluor 555 (Invitrogen, 

W32464) and Phalloidin/Alexa Fluor 568 (Invitrogen, A12380) in PBS with 1% (m/v) BSA (Sigma Aldrich, A7030). Adding 30 μL of 

the staining solution to each well resulted in the final well concentration of 4 μM HOECHST, 25 μg/mL Concanavalin A, 3 μM 

SYTO14, 1U/ml Phalloidin and 1.5 μg/ml WGA. Finally, cells were washed three times with 70 μL PBS and sealed with adhesive 

foil. Plates were stored in the dark at 4◦C until image acquisition.

Assay optimization and standardization

We employed an extensive evaluation and validation process to select suitable imaging sites for performing the cell painting assay 

and achieve standardization and comparability.

First validation phase: Selection of imaging sites

An initial protocol based on an established Cell Painting Protocol was first optimized at the FMP site (Data S1: Cell Painting assay). 

We then invited imaging sites in an open call to submit a proposal and validation data. This initial proposal requires an estimation of 

costs and duration as well as information about the available instrumentation and a track record of performing automated screening 

assays.

To generate the validation data the developed protocol with the standardized staining and cell culture protocol was shared with 

imaging sites. To achieve further standardization and optimal comparability across the sites key reagents were shared. Reference 

compounds were prepared and aliquoted from the same lot and distributed to all sites. The same cell culture serum lot was acquired 

and provided to all sites. Finally, the cells were prepared and distributed by the FMP site.

The evaluation of the proposals and the validation data was performed in two stages based on pre-defined criteria by two external 

reviewers (Data S1: Evaluation Criteria, Data S1: Evaluation scoring). The reviewers were selected based on their expertise in the field 

of image-based screening and early drug discovery. In the first stage the provided data was evaluated based on how well the candi

date sites implemented the protocol, the overall quality of the generated data, as well as for intra-as well as inter-plate consistency 

(Data S1: Evaluation stage 1). To pass the first evaluation more or equal to 65% of the first selection criteria needed to be reached. In 

the second stage, the candidate sites that passed the first criterion were evaluated for assay cost, the duration for screening 100,000 

compounds, clarity of the proposal as well as a track record (Data S1: Evaluation stage 2). The score of the assay validation was 

considered with a factor of 10% in the second evaluation. Based on the participant’s final score four imaging sites were selected 

for performing the assay on the EU-OPENSCREEN Bioactive Compound Set.

Second evaluation phase: Protocol optimization

To reduce variability across sites we implemented additional measures and experiments. We reasoned that the main sources of vari

ability observed could originate from differences in compound preparation, the cell culture, staining methods, or microscopy.30

To assess the effect of the microscopy on the result of our Cell Painting assays we performed an additional validation experiment. 

The FMP site shared a fully stained plate with the other three partner sites. We further developed a microscopy guide for the imaging 

sites so that the final images were in the same intensity range in each channel. In this experiment, we found no improvement in 
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comparability across sites. To address any variability stemming from differences in compound preparation we distributed pre-pre

pared assay-ready plates (compound plates). This also did not improve the comparability. Thus, differences in cell culture as well as 

staining drive this variability. To exclude variability due to cell culture and staining material, we acquired, prepared and distributed the 

same serum lot, cells, and lots of fluorescent dyes centrally.

Image acquisition

Cell images were acquired using automated confocal microscopes equipped with water-immersion 20x objectives (1.0 NA). Offsets 

were determined for each cell line and kept constant throughout the experiment. For each well of the 384 well plate, nine fields in a 

3 × 3 array, located in the center of the well, were imaged using 2x binning and four fluorescence channels to capture HOECHST 

33342, Concanavalin A and SYTO14, Wheat Germ Agglutinin and Phalloidin, as well as MitoTracker. Excitation and emission wave

lengths of these four channels vary based on the imaging system used by the different partner sites (Table S11).

Image feature extraction

We used CellProfiler version 4.1.38 with the JUMP analysis pipeline version 3,54 original available here at Github: https://github.com/ 

broadinstitute/imaging-platform-pipelines/tree/master/JUMP_production) for feature extraction. A total of 2977 features were ex

tracted from each segmented cell in all fields per well. The pipeline was executed in parallel on 5 nodes of our high-performance 

computing cluster (HPC) (Table S12).

We adjusted the feature extraction pipeline for our four-channel dataset (DNA, ER, AGP and Mito). The illumination function was 

calculated on the individual channels with a median filter set to a kernel size of 20 px. The function was computed on all images across 

cycles with rescaling. The illumination function was applied using a division. No images were removed based on the image quality 

control of the CellProfiler workflow.

Nuclei in the DNA channel were segmented with a global minimum cross-entropy threshold using a threshold smoothing scale of 1 

and a threshold correction factor of 1. The lower and upper bounds of the threshold were set to 0.005 and 1.0 respectively. No log 

transform of the image intensity values was performed before thresholding. The shape of the objects was used to separate objects 

with a smoothing filter using a radius of 10 px applied before separation. Local maxima with a distance smaller than 8 px were sup

pressed. Holes were filled after de-clumping. Nuclei with a diameter of 15 px - 90 px were kept in U-2 OS and Hep G2 cells.

Cells were segmented based on the ER channel using a marker-controlled watershed using the segmented nuclei as input. A global 

intensity-based threshold using the Otsu thresholding method was used to compute a three-class threshold, assigning the pixels of 

the middle class to foreground. No smoothing was applied to the images. The threshold correction factor was set to 0.7. The lower 

and upper bounds of the threshold were fixed to 0.005 and 0.6 respectively. A log transformation was applied before thresholding. 

Cell and nuclei objects that were touching the image border were filtered for some of the feature computation. To create a mask of 

only the cytoplasm the nuclei were subtracted from the cell mask.

The following image features were computed based on the AGP, DNA, ER, and Mito channel within the nuclei, cell, and cytoplasm 

mask. All correlation metrics with a threshold of 15% of the maximum intensity. The Faster method was used to compute a Costes 

thresholding. Granularity was measured with a subsampling factor of 0.5 and a subsampling factor of 0.5 for background reduction. 

The radius of the structuring element was set to 10 and the range of the granular spectrum set to 16. The intensity in the illumination 

corrected images was measured. The intensity distribution within the objects was computed by scaling the bins and using 4 bins.

Textures were measured in nuclei, cells and cytoplasm in the DNA, ER, Mito channel using 256 Gy level bins with a scale of 3, 5, and 

10. The size and shape of nuclei, cells, and cytoplasm including Zernike features were extracted. The number of cell neighbors was 

measured within a 5 px distance including cells that were touching the image border. Further the number of all adjacent cells were 

measured including cells that were touching the image border. The number of nuclei neighbors were measured within a 1 px distance 

including nuclei that were touching the image border. For the Mito channel the Neurites feature type score was computed enhancing 

the tubeness enhanced Mito channel with a smoothing scale of 1. Based on the tubeness enhanced Mito image, the intensity dis

tribution of cells with nuclei as center, the cytoplasm with nuclei as center was computed by scaling the bins and using 16 and 20 

bins with a maximum radius of 200 px.

On the tubeness enhanced Mito channel a global minimum cross-entropy threshold was applied using a smoothing scale of 1.3488 

and a correction factor of 1.0. The lower and upper bounds for the threshold were set to 0.0 and 1.0 respectively. No log transform 

was performed before the thresholding. On the mask of the Mito channel a skeletonization algorithm was applied with filling in small 

holes of maximum 10 px. Finally, skeleton features were extracted.

Overall image intensities were extracted from the illumination corrected images. Background in each channel was computed in the 

image content outside of the segmented objects.

Single cell filter

Before aggregation, the measurements for individual cells were filtered to remove cells with any missing or infinite values. Further

more, an HBOS filter was performed to remove objects that had a feature vector that was different from the distribution of features 

over the entire plate.25 In our tests, this was well suited to particularly remove artifacts in segmentation as well as dead cells. The 

outlier selection was computed with the HBOS function of pyod64 version 1.0.9 with python65 version 3.9.16. The histogram was 

computed using a static number of bins of 10, an alpha of 0.1, the flexibility parameter (tol) set to 0.5, and the proportion of outliers 
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(contamination) set to 0.1. The HBOS model was then applied to classify each individual feature vector into outlier and non-outlier.

After the outlier, missing and infinite values filters, median values were computed for each well based on up to nine fields per well. 

Note that for some fields no segmentation was achieved, or they were removed in the filter step before data aggregation. Some 

particular toxic compounds had no extracted features over all replicates; these were counted toward the toxic compounds number.

Similarity search

The structural overlap between the EU-OS bioactives compound collection (www.ecbd.eu, library ‘‘Bioactives’’) and the compound 

investigated in the JumpCP project (Github: https://github.com/jump-cellpainting/datasets/blob/main/metadata/compound.csv.gz) 

was determined as follows: the compound structures were read into KNIME software and the ECFP-4 fingerprints generated using 

the CDK community node extension. Using the ‘‘Similarity Search’’ node, for each entry of the bioactives dataset the identifier of the 

most similar compound in the JumpCP dataset was listed if its tanimoto similarity was equal or greater than 95%.

Normalization, feature reduction and profile aggregation

We used pycytominer26 version 0.2.0 in python 3.9.16 on Ubuntu 22.04.3 LTS for further processing of the profiles. The image fea

tures per well were normalized per plate to the DMSO controls using the robust median absolute deviation function (mad_robustize). 

The epsilon value was set to the default value of 1e-06. Feature reduction was performed by first removing columns with NaN values. 

Then features with a low variance were removed via a variance frequency cut-off of 0.1 and a variance unique cut-off of 0.1. Feature 

outliers were removed with the outlier cut-off set to 100. Finally, features with high correlation were reduced using a correlation 

threshold of 0.9. For aggregating the profiles over the four replicates the median function was used.

Toxicity filter

We determined toxic compounds as these have been shown to produce highly similar features with unspecific MOAs.27 We first 

compute the consensus median cell number for each well per plate over the four replicates. We then defined compounds as toxic 

with per well consensus cell count smaller than the median of the population of the entire dataset subtracted by 2.5 standard devi

ations of the population.

Activity filter

The percent of replicating compounds over the compound set after the toxicity filter was initially ranging from 60.1 to 77.5% 

(Figures S13A–S13E). We also observed that many of the compounds in both cell lines gave very small responses in their morpho

logical profiles compared to the DMSO negative control. We suspected that many of the compounds with small phenotypic response 

in the specific cell line also exhibit low reproducibility. To determine compounds with lower activity we applied an induction filter.23 To 

determined induction first median features per compound over the four replicates were computed. Features were defined respond

ing when deviating three times from the median absolute deviation from the median of the DMSO controls. For each compound the 

fraction of active features was then computed and a threshold of 5% applied to define a compound with an active response.

Plate quality controls

The aggregated data files containing the median values for each well per plate were further aggregated into a single dataset using a 

KNIME workflow. For visualization of plate artifacts five CellProfiler features were selected: Metadata_Object_Count, reflecting the 

number of detected cell objects. Further the mean fluorescence intensity values of following compartments and stains, reflecting the 

dispense quality of the dyes: Nuc_Intensity_MeanIntensity_DNA (HOECHST 33342), Nuc_Intensity_MeanIntensity_ER and 

Cyto_Intensity_MeanIntensity_ER (Concanavalin A & SYTO14), Cyto_Intensity_MeanIntensity_AGP (Phalloidin & Wheat germ agglu

tinin), Cyto_Intensity_MeanIntensity_Mito (Mitotracker Deep red).

The data for each plate and feature was visualized using heat maps that were generated within a KNIME66 workflow using R67 snip

pets and the R library ‘‘ggplot2’’.68 KNIME version 5.1.0, R version 4.3.1, R ggplot2 package version 3.4.3 was used. The generated 

plots were then transferred into the integrated reporting tool of KNIME, and assembled into a single printable report file for each data

set. Heatmaps of Metadata_Object_Count were scaled as follows: the global maximum and median were determined, and rounded 

up to two digits. The color yellow was assigned to the median object count, blue to the maximum, red to zero objects. This way it is 

possible to spot differences in absolute cell number that was dispensed across the different plates. Heatmaps of the mean fluores

cence features were scaled as follows: for each plate, the values were divided by their median for data normalization, since we do not 

have plate controls at hand that are specific for those features. The color yellow was assigned to the median value, blue to 1.5-fold the 

median value, and red to 0.5-fold the median value.

The plots of the four technical replicates were combined on a single report page for each screened library plate. The median Z 

score values of these four technical replicates were added as a fifth heatmap. This way, it is possible to spot whether taking the me

dian of the replicates would reduce plate artifacts that are visible on individual technical replicates.

Cell death analysis

For the analysis of dead cells in U2OS and Hep G2 two features ‘‘cell area’’ and ‘‘ratio cell width to length’’ were used. For classifi

cation of dead cells, the following thresholds were defined: cell area <1,000 μm2 and ratio cell width/cell length >0.83.
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Dimensionality reduction

We used Uniform Manifold Approximation and Projections (UMAP)29 to create visualizations of the morphological feature space in 

2D. For the batch control quality figures, we used the data filtered for toxic, lower activity and non-replicating compounds. To perform 

the UMAPs for the batch quality control we used the default settings using the Euclidean metric, with the number of neighbors set to 

15 and the minimum distance set to 0.1. The data points in the visualizations were then labeled by their replicate or plate number.

For the analysis of the morphological features space, we used the data only filtered for non-replicating compounds leaving in the 

toxic as well as the lower active compound. The number of neighbors was set to 30 with a minimum distance of 0.1. We then labeled 

on the UMAP visualizations the control compounds (DMSO, Nocodazole and Tetrandrine). The data points were then labeled for toxic 

as well as lower active compounds. For the basic MOA analysis for compounds, acting against Tubulin we did a basic search and 

asked if a single target in the annotated targets of any compound contained the string ‘Tubulin’.

Senescence analysis

For the analysis of cellular senescence, we extracted the cell area as well as the nuclear intensities for all compounds of each FMP 

dataset. For this analysis we computed Z-Scores based on the median and median absolute deviation of the entire plate. The normal

ized parameters were then plotted against each other in a 2D dot plot. Finally, we labeled compounds that are known to induce 

cellular senescence41 (e.g., PALBOCICLIB, CAMPTOTHECIN and SN-38 an active metabolite of a CAMPTOTHECIN analog) on 

these plots.

Image figures

Image figures were prepared with established processing and image visualization standards72,73 using Fiji.69 In detail for the image 

figures, randomly selected wells from the negative and positive controls were used. For Figures 2C and 2D the fifth (middle) field of the 

selected well was used. For Figures S1 and S2 the first field of the selected well was used. The individual images for each channel 

were corrected for illumination using the same method as the HPC CellProfiler cluster workflow. The lower bound of the brightness 

contrast function was then set in all treatments to an empirically determined camera background in the DMSO treated images within 

each individual channel. Three large rectangular ROIs were drawn in an area of the image without cells. The mean gray value was 

measured in the ROIs and an average was computed. The upper bound was adjusted based on the brightest treatment in each in

dividual channel and applied over all treatments to ensure intensity values can be compared over the treatments within a single cell 

line (Tables S13 and S14).

After brightness and contrast adjustments, the images were converted to 8-bit and saved as PNG. For an overview of the DNA, 

AGP and Mito channels were merged with Cyan, Magenta and Green LUTs respectively. A ROI for the inset was chosen in the middle 

of the field of view. ROIs as well as scale bars are shown on the overview images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative metrics were computed using python version 3.9.16. Details of the metrics can be found in the figure legends in partic

ular for the raw metric graphs in the supplements.

Percent replicating

The percent of replicating compounds was computed based on the precent replicating score developed in the JUMP-CP con

sortium.31 For each compound the pairwise Pearson correlation over all available replicates was determined and a median replicate 

correlation computed. To compute a null distribution, 10,000 random samples of four randomly chosen compound feature vectors 

(non-replicates) were drawn from the dataset. The pairwise Pearson correlation of these feature vectors were computed and used to 

calculate a median non-replicate correlation. Compounds were defined as replicating if their median replicate correlation was more 

than 95% of the null distribution computed from the samples of the median non-replicate correlation.

Percent matching and percent matching over datasets

Percent matching was implemented from Cimini et al. 2022.17 Annotation was generated by combining annotations from the Broad 

Drug Repurposing hub (https://repo-hub.broadinstitute.org/repurposing#download-data)63 with our annotations. Each MOA anno

tation on each compound was treated as a separate MOA. The MOAs were filtered for more or equal of 3 occurances. Precent match

ing over datasets was implemented from percent matching across modality.17

Percent paring

For comparing the profiles between the two cell lines, the percent replicating metric was computed over the corresponding com

pounds after toxicity, activity and reproducibility filtering. We used the 427 overlapping features of the cell lines after feature reduction 

and computation of consensus profiles (Figure 4A). To differentiate this metric from the percent replicating metric we changed the 

name of this analysis to percent pairing. The null distribution was computed over randomly selected compound pairs. The same com

pound pairs over the two different cell lines were defined as pairing if above the 95% correlation threshold defined on the null 

distribution.
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