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Biliary strictures are caused by both benign and malignant
pathologies. Although up to 30% of biliary strictures are identified
as benign, the vast majority are malignant with two major ma-
lignancies, namely pancreatic adenocarcinoma and cholangiocarci-
noma (CC) [1]. Accurate diagnosis and precise localization play a
vital role in the prognosis and management of the disease [2].

In this study we primarily focused on the diagnosis of CC. The
highest incidence of CC is in northeastern Thailand, where the in-
cidence is found to be 100/100 000 in males and 50/100 000 in fe-
males. In Western countries, it is approximately (0.5-2.0)/100 000
individuals [3]. CC is most often diagnosed between the ages of 70
and 80 years [4]. The prognosis of biliary malignancies is dismal
with overall five-year survival as low as 10% [5].

CC is currently classified into two types according to its
anatomic location along the biliary tree: intrahepatic (5%-10%) and
extrahepatic CC [6]. The majority (60%-70%) of extrahepatic CC are
perihilar or “Klatskin” tumors involving the bile duct confluence
and are located above the cystic duct insertion [4,7].

Diagnosing CC at an early stage remains a challenge due to
its asymptomatic feature, difficult to access anatomical location
and highly desmoplastic, paucicellular nature of CC, which limit
the sensitivity of cytological and histological diagnostic approaches
[5,8,9]. CC generally presents with signs and symptoms of weight
loss, pruritus and cholestasis [10]. Transabdominal ultrasonography
has proven to be useful in detecting biliary tract dilation, sever-
ity of obstruction and the presence of gallstones. The direct visu-
alization of CC on ultrasonography is usually impossible [5]. Com-
puted tomography (CT) is an important diagnostic element in CC.
The benefit of CT scanning for perihilar CC was evaluated in an
analysis of 16 studies showing an accuracy of 86% for the duc-
tal extent of CC [11]. The diagnostic performance of magnetic res-
onance imaging (MRI) is comparable to CT, while positron emis-
sion tomography/computed tomography (PET/CT) is the most ben-
eficial for the detection of lymph nodes and metastases [12]. Endo-
scopic ultrasound (EUS) can be useful in the assessment of regional
lymph nodes and as a method of biopsy for a suspicious primary
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lesion [4]. However, in cases of proximal CC, due to increased risk
of tumor seeding, EUS-guided biopsy of the primary lesion is con-
traindicated in liver transplant candidates [13]. Endoscopic retro-
grade cholangiopancreatography (ERCP) is a useful approach that
has tissue access via brush cytology and/or biopsy [5,13]. More-
over, ERCP in many cases offers therapeutic relief of obstructing
masses via stent placement [13]. The low sensitivity of bile duct
brush cytology (commonly 20%-55%) presents a considerable diag-
nostic issue [14]. The fluorescence in situ hybridization (FISH) ex-
amination can in some cases increase sensitivity up to 50%-70%,
while maintaining specificity, if combined with conventional brush
cytology [14-16]. When imaging methods and biopsy fail to di-
agnose suspected malignant biliary stricture, cholangioscopy with
forceps biopsy is recommended [17]. Nevertheless, cholangioscopy
is expert-dependent, costly and not universally available [17].

None of the existing approaches allows real-time diagnosis with
an adequate level of specificity and sensitivity. Due to the silent
clinical course, two-thirds of CCs are diagnosed at an inoperable
stage. Patient survival without treatment is only 3.9 months on av-
erage, and the survival of 12-15 months can be achieved with the
use of palliative chemotherapy [18]. There is therefore a demand
for a new approach that solely relies on an objective measure-
ment of relevant tissue and bypasses limits of traditional tissue
sampling. Raman spectroscopy is a potential platform that aims
to satisfy these criteria [19]. Raman spectroscopy is a vibrational
technique that examines biomolecular tissue structures, which has
been shown to be beneficial in the detection of precancerous and
cancerous lesions in various organs [20-22]. Raman spectroscopy
has proven its potential to help endoscopists identify high risk
pathological lesions as well as reduce the need for routine biopsies
[23]. The biochemical and molecular tissue composition of pre-
malignant (intestinal metaplasia, low grade dysplasia - LGD, high
grade dysplasia - HGD) and malignant tissue of the oesophagus,
stomach, colon, bladder and lung enable it to be differentiated
from normal tissue after Raman spectroscopy is applied [20,22-
30].

We developed a new method that can provide real-time Raman
measurements of biliary stricture and physiological bile duct tis-
sue during an ERCP procedure. The method is based on the uti-
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Fig. 1. A fiber Raman probe starting from the end of the duodenoscope was intro-
duced transpapillarily into the biliary stricture using an 8.5 Fr metal sheath dur-
ing endoscopic retrograde cholangiopancreatography (ERCP). We can see the Raman
probe right in the middle of the malignant biliary stricture.

lization of a portable Raman system equipped with a fiber-optic
probe. Then the resulting raw data are subjected to spectral pro-
cessing and statistical evaluation, including a cluster analysis.

This study was conducted in a high-volume endoscopy center.
It was approved by the Ethics Committee of the University Hospi-
tal and Faculty of Medicine of the Palacky University. All patients
signed an informed consent. The inclusion criteria included sub-
jects being over 18 years of age with suspected CC and indication
for ERCP with sphincterotomy.

The Raman endoscopy instrumentation comprises a spectrum
stabilized 785 nm diode laser (1804B000-FATBOY, Innovative Pho-
tonic Solutions, Plainsboro, USA), a transmissive imaging spec-
trograph (HT3-SPEC-785-C02-F02-AN, EmVision advanced opti-
cal designs, Loxahatchee, USA), a near-infrared optimized, back-
illuminated deep depletion charge-coupled device camera (Andor
Newton EMCCD) and a specially designed Raman endoscopic probe
for both laser light delivery and tissue Raman signal collection.
Spectral resolution is given by grating, approximately 8 cm!.

The 1.65 mm diameter fiber-optic Raman endoscopic probe,
which can fit into the instrument channel of medical endoscopes
consists of 200-micron core fiber for Raman laser delivery and
200-micron core Raman collection fibers. The numerical aperture
of these fibers is 0.22.

During ERCP, a fiber Raman probe was introduced transpapil-
larily into the biliary stricture using an 8.5 Fr metal sheath (Fig. 1).
The Raman probe was placed in an adequate position under flu-
oroscopy control. The actual measurement was subsequently car-
ried out (without fluoroscopy). All patients underwent sphinctero-
tomy indicated for other reasons. The Raman spectroscopy of bil-
iary stricture was performed 10-20 times (laser wavelength 785
nm, duration of each measurement 0.15 s). Tissues were always
measured before the brush and never with the stent in place. The
contrast fluid was present in the bile duct as well as in the duode-
num during measurement. Measurements in the duodenum were
performed under endoscopy control in the second part of duode-
num (D2, 10-20 times) (Fig. 2). We did not turn off the white light
from the endoscope when measuring in the duodenum. Immedi-
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Fig. 2. Raman spectroscopy measurement in the duodenum under visual control.
We see a Raman probe coming out of the metal sheath, and the red to white light
around the probe was the light produced by the laser. Directly above the probe was
the ampulla of Vater.

ately after Raman acquisitions, the brush cytology was done to as-
sess the etiology of the biliary stricture. The attained data were
saved and processed by Andor Solis for Spectroscopy software (An-
dor, Belfast, UK). Raman spectra obtained from patients with a fi-
nal diagnosis of CC were subsequently analyzed in collaboration
with a biophysicist from the Institute of Molecular and Transla-
tional Medicine in Olomouc.

In total, we measured 20 patients with a mean age of 71 years
(range 38-89); 45% of patients were males. A total of 815 mea-
surements were performed, of which 466 (171 of CC, 154 of phys-
iological bile duct, 141 of duodenal tissue) were subsequently an-
alyzed. We performed 10-20 Raman measurements of tissue in-
dicated as suspected CC (based on the fluoroscopy image during
ERCP), healthy tissue and duodenal mucosa for each of the selected
20 patients where biliary stricture indicated ERCP with sphinctero-
tomy. Diagnoses based on brush cytology findings were in most
cases: extrahepatic CC (n = 11; proximal CC, n = 10; distal n = 1),
ampullary tumor (n = 6; adenocarcinoma, n = 3; adenoma HGD,
n = 2; adenoma LGD, n = 1) and primary sclerosing cholangitis
(n = 1). Two patients finally had physiological findings on the bil-
iary tract, without biliary stricture. Since the most common final
diagnosis of biliary stricture among enrolled patients was CC, we
decided to only evaluate whether there were differences in the
measured Raman spectra between CC and physiological biliary tis-
sue. We did not have enough data to evaluate whether there are
differences between CC/physiological bile tissue and other types of
biliary strictures. It is noteworthy that transpapillary insertion of
the probe was not successful in 5 cases. The procedures were al-
ways only performed by an experienced endoscopist. No procedure
related complications were noted in any of the patients. No me-
chanical damage to the probes was observed. No damaged tissue
was observed when the pathology was reported.

Raman spectra were pre-processed and evaluated in the R en-
vironment for statistical computing, in particular using R package
ChemoSpec (Hanson B. Package Version 2.0-2). First, the spectral
region from 700-1800 cm™! was selected for further analysis to
remove silent regions and redundant data. The selected region in
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Fig. 3. A: Processed average Raman spectra from the analysis of three sets of samples for healthy bile duct wall, stricture and duodenal mucosa. Red spectra represent mean
spectrum =+ standard error (SE) at 95 % confidence interval (CI). Spectra obtained for stricture and healthy tissues were at first sight similar, and there were also visible
region differences from 1000-1300 cm™! for duodenal mucosa, marked by arrows and grey background for a better comparison across various types of samples. B: Analysis
of the number of components for principal component analysis. The number of components for further processing was selected based on the percentage of total variance
captured by principal components. The captured total variance did not considerably increase when more than eight components were selected. C: Analysis of orthogonal
distance for concrete measurements. The analysis of the orthogonal distance uncovered a moderate spectral difference among some types of samples, which could be caused
by a biological variance, changing environment around the Raman probe, differences in angles between the measured tissue and the probe, etc.

most cases covered the majority of the spectral variance. Influence
of the present fluorescence spectral background was minimized by
a subtraction of polynomial functions (n = 5). Spectra were then
normalized using a probabilistic quotient normalization that of-
fers reliable performance in the processing of spectral data, includ-
ing data obtained using Raman spectroscopy [31]. Spectral noise
was treated using the well accepted Savitsky-Golay algorithm. Data
were subjected to a statistical evaluation without a derivation step,
as it did not lead to considerable improvements in the subsequent
analysis (data not shown). The overview of the processed spectral
datasets can be seen in Fig. 3A for all three measured tissue types,
namely healthy bile duct wall, stricture tissue and duodenal mu-
cosa. Fig. 3A shows the average spectra together with lower and
upper 5 % ranges. Spectra obtained for stricture and healthy tis-
sues were at first sight similar, and there were also visible region
differences from 1000-1300 cm™! for duodenal mucosa, marked by
arrows and grey background for a better comparison across vari-
ous types of samples. Next, we performed a principal component
analysis (PCA). The PCA was performed to evaluate i) if there are
any outliers in the measured datasets, ii) understand the data, iii)
determine the minimum number of components necessary to de-
scribe a data set and, in effect, remove noise and remaining redun-
dant information. The number of components for further process-
ing was selected based on the percentage of total variance cap-
tured by principal components (Fig. 3B). The captured total vari-
ance did not considerably increase when more than eight compo-
nents were selected. We thus performed further processing with
eight components. The analysis of the orthogonal distance (Fig. 3C)
uncovered a moderate spectral difference among some types of
samples, which could be caused by a biological variance, chang-
ing environment around the Raman probe, differences in angles
between the measured tissue and the probe, etc. We decided to
continue working with all data in this preliminary scenario. The
attained heat map (Fig. 4A) indicated a considerable spectral dif-
ference between the resulting data for duodenal mucosa (labelled
as “OUT”) and internal parts of the bile duct (labelled as “NOR” for
healthy tissue and “CAN” for stenosis), which was in agreement
with previously shown average spectral data. This phenomenon
was further projected in Fig. 4B, which showed that a considerable
number of points obtained for duodenal mucosa did not overlap
with points obtained for the remaining two sample types. Unfor-
tunately, spectral data of cancerous and healthy tissues overlapped
considerably, which could indicate probable issues for their further
discrimination. Finally, Fig. 4C shows the results of the discrim-
inant cluster analysis performed on the data resulting from the

PCA, which means data with decreased dimensionality [32]. Cluster
analysis, in this case based on the partial least squares approach
(partial least squares discriminant analysis, PLS-DA in particular),
can be considered as an automated search for groups of related ob-
servations in each dataset. The PLS-DA method allows the PLS algo-
rithm to be used for classification as well. It performs similarly to
PLS. The response vector y contains categorical vectors rather than
continuous vectors. PLS-DA performs well over large data-frames
and is not influenced by collinearity [33,34]. There are two key
issues to be resolved: i) selection of the clustering method, and
ii) determination of the number of clusters. In the mixture mod-
elling approach applied here, both can be covered by a model se-
lection. In our case, the model was selected based on the Bayesian
approach, where the VVV (varying volume, varying shape, varying
orientation - ellipsoidal covariance) model gave the best perfor-
mance. The attained results indicate a possibility for discrimina-
tion among all three sample types. However, many data clusters
are overlapping, and further spectral analyses are needed to per-
form discrimination with adequate selectivity and sensitivity.

Shim et al. first performed Raman spectroscopy of the gastroin-
testinal tract in 2000 [35]. They used a fiber probe with a 785 nm
laser. The probe consisted of a central delivery fiber with a core
diameter of 400 um surrounded by seven collection fibers with
a core diameter of 300 um that could pass through the acces-
sory channel of the endoscope [35]. Bergholt et al. demonstrated
that the Raman endoscopy technique has potential for real-time
diagnosis of oesophageal carcinoma [25]. Huang et al. showed the
possibility of Raman spectroscopy for non-invasive endoscopic di-
agnosis of cancerous lesions in the stomach [20]. There have also
been other studies successfully using Raman spectroscopy in the
discrimination of physiological, premalignant and malignant gastric
tissue [24,36,37]. Noothalapati et al. particularly reviewed several
studies with a potential use of Raman spectroscopy in colorectal
cancer screening [38]. Raman spectroscopy has been suggested as
a viable alternative due to its potential as a rapid non-invasive di-
agnostic tool [38]. However, CC diagnosis using spectra techniques
has thus far been overlooked.

The current standard for diagnosing biliary stricture relies on
histological or cytological examination of endoscopic specimens by
the pathologist. However, early malignant lesions can be difficult to
identify due to limited sensitivity of current diagnostic modalities
[2].

The main aim of our study was to perform Raman spec-
troscopy for the diagnosis of biliary stricture during ERCP. Molecu-
lar changes of biliary stricture, localized by previous imaging meth-
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Fig. 4. A: Heat map and dendrograms for all sample types, namely healthy wall (label NOR), stenosis (label CAN) and duodenal mucosa (label OUT). The attained heat map
indicated a considerable spectral difference between the resulting data for duodenal mucosa and internal parts of the bile duct (healthy tissue and stenosis), which was in
agreement with previously shown average spectral data. This phenomenon was further projected in Fig. 4B. B: Results of the principal component analysis (PCA) for principal
components 1 and 2, with Raman spectra of healthy bile duct (blue), stenosis tissue (red), and duodenal mucosa (black) of the measured sections. Spectral data obtained
from tissue analysis of stenosis and healthy bile duct overlapped significantly, which could indicate probable issues for their further discrimination. However, there was a
considerable number of points obtained for duodenal mucosa not overlapping with points obtained for the remaining two sample types, which indicated the possibility of
distinguishing these samples. C: Results of the cluster analysis performed on PCA data using the VVV (varying volume, varying shape, varying orientation) model. Figure
shows the results of the discriminant cluster analysis performed on the data resulting from the PCA analysis, which means data with decreased dimensionality.

ods, were assessed in real time. These identified intra-tissue Ra-
man biomolecular signals could be advantageously used to guide
the endoscopist to biopsy suspected biliary stricture, as well as
for their staging, given that while imaging methods are limited to
imaging a visible stricture, Raman spectroscopy can diagnose ma-
lignant tumor tissue even in places where there is no visible stric-
ture. The unrivalled advantage of the Raman spectroscopy tech-
nique stems from its capability to uncover specific information
about backbone structures of proteins, lipids and nucleic acid as-
semblies in cells and tissue [33,39].

To date, Raman spectroscopy combined with gastrointestinal
endoscopy evaluation tissue has mostly been focused on evaluating
the oesophagus, gastric and colon tissue. The clinical significance
of Raman spectroscopy is underestimated due to standardization of
the instrument, data analysis and operative procedures. The com-
bined technique of Raman spectroscopy and endoscopy identifies
tissue areas for sampling and enables rapid non-invasive diagno-
sis based on molecular information [38]. The Raman spectroscopy
measurement itself, moreover, has no cost. However, Raman spec-
troscopy combined with endoscopy offers unique opportunities to
develop a low-cost non-invasive method that is suitable for large
scale screening of malignant lesions in the oesophagus, stomach
and colon.

For the first-time, we investigated biliary stricture with Raman
spectroscopy, physiological tissue of bile ducts and duodenal mu-
cosa during ERCP and explore the potential of translating Raman
biomolecular spectral differences between normal and malignant
bile tissue for realizing endoscopic diagnosis of cancerous lesions
in the bile duct. Unlike endoscopy of the oesophagus, stomach and
colon, endoscopy of the bile ducts, cholangioscopy, is an expensive
method and is difficult to perform.

Our results indicated a possibility to discriminate between the
spectra of duodenal mucosa from spectra of healthy bile ducts and
stricture. However, discrimination of stricture from the healthy bile
duct wall still presents a considerable challenge. This unique en-
doscopic approach based on real-time Raman spectroscopy has the
potential to open a new avenue for objective diagnosis of CC in
vivo at the molecular level.

The introduction of the spectroscopy probe into the bile ducts
was sometimes challenging due to the limited flexibility of the
probe, obturation of Vater's papilla by the tumor mass, anatom-
ical conditions and the resulting difficult cannulation of the bile

ducts with a metal sheath. In one case (distal extrahepatic CC) the
introduction was successful, the tumorous tissue filled the lumen
of the bile duct, so we did not measure physiological tissue. In an-
other five cases of failure (1 CC, 3 ampullary tumors, 1 physiolog-
ical finding on the bile duct), the introduction was limited by in-
dividual anatomical conditions, mainly the angle of separation of
the bile ducts, peripapillary diverticula and the size of the lumen.
Importantly, we did not notice any increased occurrence of compli-
cations during the procedure compared to conventional ERCP. None
of the patients developed acute post-ERCP pancreatitis or any other
complication.

We measured spectra for biliary stenosis, physiological bile duct
tissue and duodenal mucosa. The spectra of duodenal mucosa were
in many cases visually different from those determined for biliary
tissue, confirming the promising potential of Raman endoscopy for
detection of neoplastic lesions in the bile duct during ERCP exam-
ination. Moreover, the results attained from the performed math-
ematical analysis further support this potential. However, the per-
formed statistical analysis thus far did not uncover a significant Ra-
man spectral difference between tumor biliary stenosis and phys-
iological biliary tissue. The reason is probably a complex mix of
interfering effects, including a lower number of performed mea-
surements or high levels of present fluorescence (Fig. 3A). This can
be caused by a presence of blood and bile in the measured points
of interest, as both also have high levels of autofluorescence in the
range of the applied excitation source operating at 785 nm. Pos-
sible solutions to this challenge include increasing the number of
analyzed samples and introducing more capable statistical models.

Raman spectroscopy in endoscopy has some limitations. The
detection of scattering of photons in tissues typically requires
physical contact between the optical probe and the target tis-
sue and can characterize only a small portion of a suspicious le-
sion [40,41]. Another limitation is autofluorescence which can be
much stronger than Raman signals that can be masked by the flu-
orescence background [42]. It is important to mention that repro-
ducibility can be jeopardized due to the variability in endoscopists
and the pressure they apply to the contact probe against the tissue
[42].

In conclusion, transpapillary Raman spectroscopy of biliary
stricture is feasible. We have successfully developed a Raman en-
doscopic technique that can acquire spectra for biliary stricture and
physiological bile duct tissue. Although duodenal and biliary Ra-
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man spectroscopy patterns were different, no significant difference
between CC and normal bile duct was observed. We did not have
enough data to evaluate whether there are differences in the mea-
sured spectra between CC/physiological bile tissue and other types
of biliary strictures. Raman spectroscopy is a promising technique
for tissue diagnosis of biliary stricture. Further studies with larger
number of patients and the introduction of more complex statisti-
cal methods are thus necessary to differentiate between physiolog-
ical and malignant biliary tissue.
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