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Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a
wide variety of biological activities. These activities suggest that these compounds may represent
potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally
occurring triterpenes usually have several drawbacks, such as limited activity and insufficient
solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for
drug development. Modifications can be achieved either by methods of standard organic synthesis
or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most
cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates.
Notably, while standard organic synthesis has been heavily used and developed, the use of the
latter methodology has been rather limited, but it appears that biocatalysis has recently sparked
considerably wider interest within the scientific community. Among triterpenes, derivatives of
lupane play important roles. This review therefore summarizes the natural occurrence and sources
of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the
production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article
compares chemical transformations of lupane triterpenoids with analogous reactions performed by
biocatalysts and highlights a large space for the future development of biocatalysis in this field. The
results of this study may serve as a summary of the current state of research and demonstrate the
potential of the method in future applications.

Keywords: lupane; betulinic acid; betulin; lupeol; biocatalysis; extraction; biotransformation; synthe-
sis; prodrugs; enzyme

1. Introduction

Natural products have been used in traditional medicine for a long time, and since
the appearance of modern science, they have been recognized as valuable sources of
new drugs [1–5]. Considerable money has been invested in their isolation from natural
sources and characterization of their structures and biological activities. High-throughput
screening was introduced for fast and efficient testing of large numbers of new compounds
from nature or chemistry labs [6–9]. In 2015, David et al. wrote a very informative review in
which the authors summarized some of the most successful drug leads in history that came
from natural products [10]. This review also reports that there was a significant decline
in investment in natural drug discovery programs during the early 2000s because more
attention was paid to combinatorial chemistry and rational drug design, which appeared
to be considerably more promising. Pharmaceutical companies expected new methods to
enable the production of a number of new drugs, aiming at new molecular targets that
may be game changers for many diseases. The new approach, however, has exhibited
lower productivity in bringing new drugs to the market than previously expected, and
over the years, some of its disadvantages have appeared. One of these drawbacks is that
rational design and solid-phase combinatorial chemistry usually use limited structural
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variability, which also limits the outcome [11]. Natural compounds, on the other hand, have
almost unlimited variability of molecules, and they occupy a considerably larger chemical
space than the more focused libraries obtained as a result of the previously mentioned
methods [11]. Although it is often difficult to obtain a unique active molecule from natural
material and uncover its structure and activity, in many cases, this effort has paid off,
leading to a commercial drug. Within the past several years, the search for new natural
products started to reemerge as a source of new drugs [10]. In our opinion, equilibrium
has been achieved between the two approaches, which are both important in the drug
discovery process.

One of the largest and most important groups of natural products, which has at-
tracted considerable attention from researchers, is terpenes. Hundreds of terpenes are
isolated every year from natural resources, and even more are prepared by semisynthetic
methods [12,13]. Terpenes can have a variety of different roles in living organisms; for
example, they can participate in such processes as transferring messages and defending
organisms [14–16].

Terpenes can be formally divided into smaller subclasses based on the number of
carbons. Triterpenes are the subclass that contains 30 carbons in its structures. This subclass
is composed of a large number of compounds that may be divided according to their basic
skeletons into several structural families. The most important families of triterpenes
are derivatives of protostane, cycloartane, dammarane, and euphane, and pentacyclic
derivatives, such as oleanane, ursane, gammacerane, lupane, and hopane. Figure 1 shows
the structures of selected main skeletons of pentacyclic triterpenes—lupane (1), hopane (2),
ursane (3), and oleanane (4) [17,18].
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Triterpenes often have a variety of biological activities, and among them, betulinic acid (5)
plays an important role, along with ursolic (6) and oleanolic acid (7) (Figure 2) [19–27].

The biological activities of betulinic acid (5) will be discussed later. However, the
potential use of 5 as a commercially available drug may be limited by its insufficient
solubility in water and low bioavailability [28,29]. This low bioavailability is also the
main complication encountered when performing biological experiments; therefore, the
optimization of pharmacological parameters, including solubility, is always an important
part of the development of derivatives of acid 5. Many studies have focused on structural
modifications of betulinic acid (5) that improve its solubility and bioavailability, especially
the enhancement of solubility in polar media, and many studies have also focused on the
improvement of selectivity [29–31].

In this review, we mostly focus on the biosynthesis of lupane triterpenoids, including
betulinic acid (5), biocatalyzed modifications of acid 5, and its derivatives, and we compare
those methods to classical approaches of synthetic organic chemistry that are commonly
used. Our research group has been focused on the chemical modification of 5 for many
years, and currently, we see biocatalysis as an important alternative for the preparation of
new molecules for our biological studies, providing an alternative that affords chemical
modifications that may not easily be obtained by classical synthetic approaches.



Molecules 2021, 26, 2271 3 of 26
Molecules 2021, 26, x FOR PEER REVIEW 3 of 28 
 

 
Figure 2. Chemical structures of betulinic acid (5), ursolic acid (6), oleanolic acid (7), betulin (8), and lupeol (9). 

The biological activities of betulinic acid (5) will be discussed later. However, the 
potential use of 5 as a commercially available drug may be limited by its insufficient sol-
ubility in water and low bioavailability [28,29]. This low bioavailability is also the main 
complication encountered when performing biological experiments; therefore, the opti-
mization of pharmacological parameters, including solubility, is always an important part 
of the development of derivatives of acid 5. Many studies have focused on structural mod-
ifications of betulinic acid (5) that improve its solubility and bioavailability, especially the 
enhancement of solubility in polar media, and many studies have also focused on the im-
provement of selectivity [29–31]. 

In this review, we mostly focus on the biosynthesis of lupane triterpenoids, including 
betulinic acid (5), biocatalyzed modifications of acid 5, and its derivatives, and we com-
pare those methods to classical approaches of synthetic organic chemistry that are com-
monly used. Our research group has been focused on the chemical modification of 5 for 
many years, and currently, we see biocatalysis as an important alternative for the prepa-
ration of new molecules for our biological studies, providing an alternative that affords 
chemical modifications that may not easily be obtained by classical synthetic approaches. 

2. Discovery of Betulinic Acid (5) and Its Biological Activity 
Betulinic acid (5) was first discovered in the methanolic extract of the plant Gratiola 

officinalis by Retzlaff in 1902 [32]. Notably, the biological activities associated with acid 5 
were first reported much later, to the best of our knowledge, as first mentioned in 1976, 
when a chloroform extract of Vauquelinia corymbosa (containing betulinic acid) showed a 
growth-inhibitory effect against lymphocytic leukemia P-388 cells [33]. In 1994, Fujioka et 
al. [34] extracted betulinic acid (5) together with platanic acid from leaves of Syzigium 
claviflorum. Both compounds were identified as inhibitors of HIV replication in H9 lym-
phocyte cells. In 1995, betulinic acid (5) was found to be a selective inhibitor of human 
melanoma by Pisha et al. [35]. The growth of tumors was completely inhibited by the in-
duction of apoptosis, and no toxicity was observed. Two years after this discovery, it was 
reported by Schmid et al. [36] that acid 5 also induced apoptosis in human neuroblastoma 
cell lines. In 2002, Freire et al. [37] studied dichloromethane extracts of the inner and outer 
barks of Eucalyptus globulus. Both barks showed different compositions according to their 
results. Betulinic acid (5) was the major component of the outer bark of Eucalyptus globulus. 
In the same year, betulinic acid (5) was also identified in Rosmarinus officinalis L. by Abe 

Figure 2. Chemical structures of betulinic acid (5), ursolic acid (6), oleanolic acid (7), betulin (8), and lupeol (9).

2. Discovery of Betulinic Acid (5) and Its Biological Activity

Betulinic acid (5) was first discovered in the methanolic extract of the plant Grati-
ola officinalis by Retzlaff in 1902 [32]. Notably, the biological activities associated with
acid 5 were first reported much later, to the best of our knowledge, as first mentioned
in 1976, when a chloroform extract of Vauquelinia corymbosa (containing betulinic acid)
showed a growth-inhibitory effect against lymphocytic leukemia P-388 cells [33]. In 1994,
Fujioka et al. [34] extracted betulinic acid (5) together with platanic acid from leaves of
Syzigium claviflorum. Both compounds were identified as inhibitors of HIV replication in H9
lymphocyte cells. In 1995, betulinic acid (5) was found to be a selective inhibitor of human
melanoma by Pisha et al. [35]. The growth of tumors was completely inhibited by the
induction of apoptosis, and no toxicity was observed. Two years after this discovery, it was
reported by Schmid et al. [36] that acid 5 also induced apoptosis in human neuroblastoma
cell lines. In 2002, Freire et al. [37] studied dichloromethane extracts of the inner and
outer barks of Eucalyptus globulus. Both barks showed different compositions according to
their results. Betulinic acid (5) was the major component of the outer bark of Eucalyptus
globulus. In the same year, betulinic acid (5) was also identified in Rosmarinus officinalis L. by
Abe et al. [38]. The authors extracted compound 5 from leaves using MeOH. Last but not
least, fungi are also an important source of lupane triterpenoids. Many fungal species have
been used in traditional medicine for hundreds of years; among them, Inonotus obliquus
plays an important role because of its significant anti-cancer activity, which is associated
with the presence of triterpenoids including betulinic acid (5) and betulin (8) [39]. More
information about its natural occurrence and biological activities may be found in the
introductory part of a very recent review [40], which is mostly focused on derivatives of
betulinic acid (5) with antiprotozoal activity.

3. Natural Sources of Betulinic Acid (5), Betulin (8), and Lupeol (9)

Betulinic acid (5) may be found in a number of plant species [40]; however, most of
these plants contain the desired terpene 5 in amounts substantially less than 1%. One of
the most common sources of 5 is the white part of birch bark (e.g., Betula pendula, Betula
alba, Betula platyphylla, and Betula pubescens) [41,42]. In 2006, Zhao et al. [42] developed
a method for the simultaneous extraction and determination of betulin (8) and betulinic
acid (5) from white birch bark. Different solvents were used for the extraction of 5 and 8,
including dichloromethane, ethyl acetate, acetone, chloroform, methanol, and 95% ethanol.
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The best solvent for the extraction was ethanol. Determination was performed using
RP-HPLC with a C18 column and a mobile phase of acetonitrile–water 86:14 (v/v). A UV
detector (at λ = 210 nm) was used for detection. The results showed that the percentages of
betulinic acid (5) and betulin (8) in white birch bark differed with the location of the tree
growth site in China, and showed that the amount of betulinic acid (5) was usually lower
than the amount of betulin (8). In a study from 2011, Ren and Omori described a simple
method of extracting 8 in high purity from sycamore outer bark (Platanus occidentalis). First,
the bark was peeled off by hand, and the bark was subsequently collected and crushed.
Next, the crushed bark was washed with boiling water for 1.5 h. After filtration, terpenes
were extracted with organic solvents three times (e.g., methanol, acetone, ethanol, and
2-propanol). Combined filtrates were evaporated, and the product was collected. The
yields were between 5–6% (w/w). The amount of collected betulinic acid (5) depended
mainly on the organic solvent used during the extraction phase. The best results were
obtained by extraction with methanol (yield 5.70%). The purity of 5 was 95% [43]. In our
lab, we have been obtaining acid 5 by the extraction of sycamore (Platanus hispanica) bark
for several decades. We usually collect bark that spontaneously peels off of the trees during
the summer and extract it directly with methanol. After 2–3 crystallization procedures, we
usually obtain 1–2% (weight of the dry bark) betulinic acid (5) of 98% purity [44].

Mullally et al. [45] described a more sophisticated supercritical carbon dioxide ex-
traction of 5 from Souroubea sympetala Gilg. This new method was compared with other
extraction techniques, such as extraction with ethyl acetate, accelerated solvent extraction,
ultrasonic-assisted extraction, and Soxhlet extraction. The concentration of 5 after supercrit-
ical carbon dioxide extraction was 5.54 ± 0.2 mg/g extract. This value was comparable to
ethyl acetate extraction. The concentration of betulinic acid (5) was 6.78 ± 0.2 mg/g, which
was the highest value. In 2013, Patinha and coworkers [46] studied the compositions of
extracts of the inner and outer barks of Eucalyptus grandis x globulus by GC/MS. The results
showed distinct compositions of the inner and outer bark. The outer bark was primarily
composed of triterpenoids. The content of betulinic acid (5) was 626.0 mg kg−1 in the outer
bark. Extraction with supercritical carbon dioxide was also performed for comparison. The
results of this extraction showed that acetylated triterpenoid acids were more significantly
extracted than free triterpenoid acids. In 2015, Liu et al. [41] described a new greener
method for the extraction of betulinic acid (5) from birch bark using subcritical water as
the extraction medium. The subcritical state of water can be reached under pressure at
temperatures between 100 ◦C and 374 ◦C. Under these conditions, the thermal motion of
water is extreme according to the authors of the article. This difference in motion leads to a
change in the parameters of water. The dielectric constant of subcritical water mimics those
of methanol and acetone at ambient temperature. Optimization of subcritical extraction
was performed using response surface methodology, and under optimal conditions, the
yield of betulinic acid (5) was 28.03 mg/10 g birch bark. The results showed that subcritical
water extraction of 5 is an environmentally friendly, rapid, and selective method.

Hydrophobic deep eutectic solvents were used as an alternative for the extraction of
betulinic acid (5) and other terpenic acids in work published in 2020 by Silva et al. [47]. Deep
eutectic solvents are described in the article as a combination of at least one hydrogen bond
acceptor and a hydrogen bond donor that forms a eutectic mixture. Extraction of terpenic
acids from the outer bark of Eucalyptus globulus was accomplished using a combination of
menthol and thymol (1:2) at room temperature. The extraction yields of terpenoid acids
were 1.8 wt% for ursolic acid (6), 0.84 wt% for oleanolic acid (7), and 0.30 wt% for betulinic
acid (5). Betulin (8), as mentioned earlier, is highly abundant in birch bark, and since its
content is up to 30% [48], this source is dominant in industrial-scale extractions. There
are many other plant species that produce betulin (8) in low amounts, but to the best of
our knowledge, none of them are used as important sources of it. Lupeol (9) is another
lupane triterpene naturally occurring in plants; however, its quantities are usually lower
than the quantities of 5 or 8, and it is usually obtained as a side-product of extractions of
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other triterpenes [49–51]. A basic summary of the main lupane triterpenoid sources is in
Table 1.

Table 1. Main natural sources of lupane triterpenoids.

Plant Source Year Extraction Medium Compounds Reference

Gratiola officinalis 1902 methanol 5 [32]
Vauquelinia corymbosa 1976 chloroform 5 [33]
Syzigium claviflorum 1994 methanol 5 and platanic acid [34]
Eucalyptus globulus 2002 dichloromethane 5 and other terpenoids [37]

Rosmarinus officinalis 2002 methanol 5 [38]
Betula platyphylla 2006 various organic solvents 5; 8 [42]

Betula—various species 2014 ethanol 8 [48]
Platanus occidentalis 2011 water and organic solvents 8 [43]
Platanus hispanica 2004 methanol 5 [44]

Souroubea sympetala 2011 carbon dioxide 5 [45]
Eucalyptus grandis x globulus 2013 supercritical carbon dioxide 5 and other terpenic acids [46]

purchased birch bark 2015 subcritical water 5 [41]
Eucalyptus globulus 2020 hydrophobic deep eutectic solvents 5 and other terpenic acids [47]

4. Semi-Synthetic Procedures for the Preparation of Betulinic Acid (5)

Since betulin (8) is far more abundant in birch bark than betulinic acid (5) [42], and
the only difference between these two molecules is the oxidation stage of carbon C-28,
it is desirable to synthesize betulinic acid (5) by simple oxidation of the 28-CH2-OH
functional group to 28-COOH. Making betulin (8) a common starting material for the
chemical synthesis of acid 5 could decrease the price of the latter significantly. The main
crux of the simple oxidation step is the presence of the 3β-hydroxy group that needs to
be preserved. The chemical synthesis of betulinic acid (5) was described, for example, by
Baltina et al. [52]. Betulin (8) was first extracted from the birch bark of Betula pendula with
an extraction system of 2-propanol–water (9:1, v/v). Betulinic acid (5) was then prepared by
a two-step procedure. The first step was Jones’ oxidation, which was followed by reduction
with sodium borohydride in 2-propanol (Scheme 1). The yield of betulinic acid (5) was 92%
after the crude product was recrystallized from hot methanol.

In 2006, Csuk and coworkers developed another synthetic route for the preparation
of 5 from 8. Betulin (8) was isolated from the bark of white birch (Betula alba). The
bark contains up to 25% of 8. Betulinic acid (5) was then prepared by TEMPO-mediated
oxidation of 8 (Scheme 1). The yield of betulinic acid (5) was 86% [53]. Barthel et al. [54]
used the same oxidation system for the oxidation of 8, utilizing 4-acetamido-TEMPO. The
exact reaction conditions are described in Scheme 1. The yield of betulinic acid (5) was 72%
after recrystallization from ethanol.

Ressmann et al. [55] developed a new method for the extraction of betulin (8) and
streamlined oxidation of extracted 8 to betulinic acid (5). The extraction method employed
by these researchers is based on a biphasic system consisting of aqueous phosphonium
hydroxide solution and n-butyl acetate. Using this system of solvents, betulin (8) could be
extracted in high yields at room temperature after 1 h. Another advantage of this method is
that after phase separation, the crude extract could be directly oxidized using TEMPO and
hypervalent iodine (III) reagents (Scheme 1). The yield of betulinic acid was 18 wt.%, and
after column chromatography, it was 22 wt.% after recrystallization from methanol/water.
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acetone, H2O; (ii) sodium tetrahydroborate and isopropyl alcohol; (iii) 4-acetylamino-2,2,6,6-tetramethylpiperidine-N-oxyl,
sodium chlorite, tetrabutylammomium bromide, sodium hypochlorite, and phosphate buffer at 50 ◦C; (iv) 4-acetylamino-
2,2,6,6-tetramethylpiperidine-N-oxyl, tetrabutylammomium bromide, sodium hypochlorite, and phosphate buffer
(pH = 7.6) at 50 ◦C; (v) BAIB, TEMPO, NaH2PO4, NaClO2, 2-methyl-2-butene, BuOAc, water, and t-BuOH at 20 ◦C
for 6 h; (vi) 2,6,6-tetramethyl piperidine-N-oxyl, tetrabutylammomium bromide, and sodium hypochlorite in phosphate
buffer with dichloromethane for 6 h with pH = 6.8; (vii) sodium dihydrogenphosphate, sodium permanganate, DCM, water,
and tert-butyl alcohol at 25 ◦C for 3 h; (viii) K2CO3 and MeOH for 24 h; and (ix) KOH and MeOH with heating for 3 h.

Another method for the preparation of betulinic acid (5) was based on the oxidation
of betulinal 11. Betulinal 11 can be oxidized by NaMnO4 (Scheme 1). The yield of 5 after
purification was 85%. Another oxidation method described by the authors for the oxidation
of betulinal 11 was based on a combination of MnSO4/AgNO3. The yield of betulinic
acid (5) after purification was also 85%. The third method of oxidation of betulinal 11 was
performed by oxidation with MnO2. This method of oxidation produced betulinc acid (5)
in a small yield of 18% [54]. In some cases, betulin (8) was firstly acetylated before the
oxidation, and the free acid was then released by the reaction betulic acid acetate with
K2CO3 with high yield [56,57]. Some alternative procedures for oxidation are included
in [40].
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Both betulin (8) and lupeol (9) are usually not prepared by semi-synthetic methods;
they mostly come from extraction of natural materials.

5. Chemical Modification of Betulinic Acid (5)

The importance of chemical modification of betulinic acid (5) is highlighted in the
introduction section of this article. This topic has been reviewed several times [40,58,59].
In addition, some specific reaction conditions will be mentioned in this chapter to compare
them with biosynthetic methods that will be described later. In 2015, Kvasnica et al. pub-
lished a review article covering methods of skeletal modification of pentacyclic triterpenes,
including betulinic acid (5), with nitrogen and sulfur heterocycles. Authors covered the
synthesis and biological activities of three-membered, five-membered, six-membered, and
seven-membered terpenic heterocycles [58]. Another review covering advances in the
modification of betulinic acid (5) was published in 2018 by Borkova et al. This article was
focused on chemical modifications of ring A of 5. The authors also covered the drug poten-
tial of the prepared derivatives of betulinic acid [59]. A more recent review paper focusing
on the functionalization of betulinic acid (5) and its analogs was published two years ago
by Sousa et al. [60]. Their review covers chemical modifications of triterpenic compounds
by amination, hydroxylation, esterification, alkylation, sulfonation, alkyne-azide cycloaddi-
tion, and the palladium-catalyzed cross-coupling reaction and condensation reactions in
different positions, and provides the reader information about the biological activities of the
prepared derivatives. The authors also reviewed the synthesis of heterocyclic derivatives
and polymer conjugates [60].

Much effort has been invested into the chemical transformation of carboxylic groups
of betulinic acid (5) to produce amides. The preparation of amides is among the synthetic
methods that in some cases may be easily replaced by enzymatic synthetic procedures.
Amides are very important derivatives of betulinic acid and its close analogs, especially
because of their high anti-HIV activity [61,62], anticancer activity [63,64], hepatoprotective
effect [65], and notable self-assembly properties [66].

One of the standard procedures for the preparation of amides was published by
Xiao et al. in 2014 [67]. The carboxyl group was activated by 2-(1H-benzotriazole-1-yl)-
1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU). The reaction gave stable intermediate
12 in excellent yield and purity, and the follow-up reaction with propargyl amine under
basic conditions afforded amide 13 in 1 h in 92% yield (Scheme 2). A similar experimental
setup was used in 2020 by Li et al. [68] for the preparation of rhodamine B-based fluorescent
probes for mechanistic study.
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Another procedure used by Dang Thi et al. [64] utilized the DCC/HOBt technique for
the activation of carboxyl moieties. The exact conditions are described in Scheme 3.
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Another protocol for amide preparation was used in 2015 by Wiemann et al. [69].
The authors prepared a series of hydroxamate derivatives of betulinic acid (5) derived
containing amide and ester bonds. First, the hydroxyl group of 5 was protected in the form
of an acetyl group. Next, oxalyl chloride was utilized for the activation of the carboxylic
group. The in situ-generated acyl chloride was then treated with a hydroxamate derivative
to provide appropriate amides. Amides were prepared in high yields of 68–90%.

Carbonyldiimidazole is another coupling reagent used frequently for the preparation
of amide bonds. For example, in 2015, amide derivatives of betulinic acid (5) with a
heterocyclic moiety were prepared by Cui et al. [70] in 73–83% yields.

Esters of betulinic acid (5) with dicarboxylic acids at their 3-hydroxy group (Figure 3)
can also possess interesting biological activity, and esterification is one of the most common
chemical transformations, for which enzymatic catalysis may be beneficial. A good example
of an ester with important biological activity is the dimethylsuccinyl ester of betulinic acid,
bevirimat (17), which was tested in Phase I and Phase II trials for its activity against HIV-1
infection [71]. Bevirimat was prepared using 2,2-dimethylsuccinic anhydride with DMAP
in pyridine at a 70% yield by Hashimoto et al. in [72] 1997. The authors also prepared other
ester derivatives using this procedure by exchanging 2,2-dimethylsuccinic anhydride with
other anhydrides.

Esters of betulinic acid (5) at their 28-COOH group can also be prepared by alkylation
procedures with appropriate halogen derivatives in the presence of a base. For example, in
2016, Khan et al. [73,74] synthetized propargyl betulinate 18 using the conditions described
in Scheme 4. Compound 18 was then used for the preparation of a large set of new triazole
derivatives by 1,3-cycloaddition reactions.

Methyl betulinate can be prepared by alkylation with methyl iodide [75] or trimethylsi-
lyldiazomethane [76] in good yield (higher than 80%). Another effective method for the
preparation of methyl betulinate is the reaction of betulinic acid (5) with diazomethane in
diethyl ether [74].

The preparation of triterpenic glycosides and sugar esters is another important chem-
istry method that may be performed using enzymes. Glycosides or sugar esters are usually
more soluble in water than pure aglycones, and it was observed that in many cases, they
retain biological activity and become more bioavailable [77]. This represents a significant
improvement in pharmacological parameters of the potential drug candidate. The syn-
thesis of both sugar esters and glycosides is usually complicated, and harsh methods are
sometimes used, of which only some may be applied in the chemistry of triterpenes [78–80].
An example of the preparation of the glycoside 19 is shown in Scheme 5 [81,82]. According
to our work, these methods have only limited use because they only work for certain
sugars, while in other cases, the reactions fail or produce inseparable mixtures of isomers.
Often, the reaction conditions need to be patiently optimized [77]. This preparation is a
typical case in which chemoenzymatic synthesis would be very helpful.
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Esters of betulinic acid (5) at their 28-COOH group can also be prepared by alkylation 
procedures with appropriate halogen derivatives in the presence of a base. For example, 
in 2016, Khan et al. [73,74] synthetized propargyl betulinate 18 using the conditions de-
scribed in Scheme 4. Compound 18 was then used for the preparation of a large set of new 
triazole derivatives by 1,3-cycloaddition reactions. 

 
Scheme 4. Preparation of a propargyl ester derivative of betulinic acid [73]. Reagents and conditions: (i) potassium
carbonate, and acetone under reflux, 14 h.
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6. Biocatalysis

According to the summary presented in an article by Milner and Maguire in 2012 [83],
biocatalysis is a field that involves the participation of enzymes or whole cells that contain
the desired enzyme or enzyme systems as catalysts for chemical reactions. In another
article from 2017 by Sun et al. [84], the importance of biocatalysis for pharmaceutical
synthesis was highlighted. The importance of biocatalysis lies mainly in the ability of
biocatalysts to make the synthetic routes shorter. This can increase the overall yield of
the reaction sequence. Enzymatically catalyzed reactions can often be executed under
mild reaction conditions. Usage of toxic reagents can be avoided. Reactions catalyzed by
biocatalysts can provide high yields with excellent chemo-, regio-, and stereoselectivity, and
another important advantage is that undesired side products are often generated in smaller
yields than with the use of classical organic synthesis. The main classes of biocatalysts are
reductases, oxidases, hydrolases, lyases, isomerases and transaminases.

7. Biosynthesis of Pentacyclic Triterpenes

Biosynthesis of cyclic triterpenes starts from squalene (20) or squalene oxide (21)
and is catalyzed by triterpene cyclases. Cyclisation is usually initiated by protonation of
the terminal π bond of squalene or the terminal epoxide moiety of squalene oxide, and
it continues with a cascade of carbon−carbon bond-forming reactions, ultimately yield-
ing various triterpenes depending on the catalyst. The triterpene cyclase active site also
must enforce appropriate conformation to the substrate to obtain correct chirality of the
product. Squalene-hopene cyclase produces triterpene hopene from squalene, which is
the starting material for other hopanoids. Oxidosqualene cyclase is responsible for the
cyclization of squalene oxide [85]. The next section of this review is focused mainly on
the biosynthesis of biologically interesting lupane-type triterpenoinds. Other compounds,
such as oleanane and ursane pentacyclic triterpenoids, are not included because in 2020,
Luchnikova et al. published a comprehensive review on their biosynthesis and biotransfor-
mation, distribution in nature, and biotechnological synthesis using microorganisms [18].
The review also contains information about selected biological activities of oleanane and
ursane triterpenoids [18].

8. Biosynthesis of Betulinic Acid (5), Betulin (8), and Lupeol (9)

Enzymatic synthesis of cyclic triterpenes, including lupeol (9), which is an interme-
diate for the biosynthesis of betulin (8) and betulinic acid (5), was reviewed in detail by
Abe in 2007 [86]. The biosynthesis of lupeol (9) starts from (3S)-2,3-oxidosqualene (21).
First, the cyclization of (3S)-2,3-oxidosqualene is initiated by protonization and produces
the 6.6.6.5-fused tetracyclic dammarenyl C-20 cation 22. Next, D-ring expansion occurs,
producing cation 23, from which lupanyl tertiary cation 24 is generated, and this charged
species then eliminates protons from one of the terminal methyl groups to give lupeol (9)
(Scheme 6) [86].
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The next part of this section contains information about reported lupeol triterpene
synthases. This topic was recently reviewed in detail in An et al. [87]; therefore, we will
not discuss it in detail. In 1998, Herrera et al. [88] cloned and characterized the lupeol
synthase gene from Arabidopsis thaliana. Expression of the LUP1 gene produced the major
product lupeol (9) and minor amounts of β-amyrin (26) and other triterpene alcohols. In
1999, Shibuya et al. [89] found two new lupeol synthase cDNA genes using PCR. One gene
was cloned from olive leaves of Olea europaea and coded OEW. The second gene, TRW,
was cloned from dandelion roots of Taraxacum officinale. Expression of these genes in an
ERG7-deficient yeast mutant leads to the accumulation of lupeol (9). This result confirmed
that both genes encode lupeol synthase proteins. In 2000, Kushiro et al. [90] described
the presence of multifunctional triterpene synthase in Arabidopsis thaliana. The presence
of this enzyme was demonstrated by the expression of YUP8H12R.43 (from Arabidopsis
thaliana) in yeast, leading to the production of at least nine terpenes. The authors were able
to identify lupeol (9), taraxasterol (25), β-amyrin (26), Ψ-taraxasterol (27), bauerenol (28),
α-amyrin (29), multiflorenol (30), butyrospermol (31), and tirucalla-7,21-dien-3β-ol (32)
(Figure 4).
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Another multifunctional triterpene synthase was described the same year by Morita et al.
in Pisum sativum, which was discovered by expressing PSM. A mix of β-amyrin (26),
α-amyrin (27), and several other minor triterpenes (lupeol (9) was one of them) was pro-
duced. In 2003, another four cDNA genes of oxidosqualene cyclase were cloned using the
PCR method by Zhang et al. [91] from cell suspension cultures of Betula platyphylla. These
genes were BPX, BPX2, BPW, and BPY. Expression was tested in Saccharomyces cerevisiae.
Analyses showed that BPX and BPX2 are responsible for coding cycloartenol synthase,
while BPW and BPY products are responsible for coding lupeol (9) and β-amyrin (26)
synthases. An additional study focused on oxidosqualene cyclase from Arabidopsis thaliana
was performed in 2003 by Ebizuka et al. [92]. Two new cDNAs, F1019.4 and T30F21.16,
were identified by the authors. The authors were able to identify three biosynthetic
products of expression of T30F21.16. These products included lupeol (9), bauerenol (28),
and α-amyrin (29). Analytical data on the products of expression of F1019.4 showed the
presence of tirucalla-7,21-diene-3β-ol (32). In 2003, Iturbe-Ormaetxe et al. [93] focused
on cloning and characterization of three triterpene synthases from Medicago truncatula
and Lotus japonicus. Expression of LjAMY2 in yeast produced β-amyrin (26) and lu-
peol (9) in almost equal amounts according to results presented by the authors. In 2004,
Hayashi et al. [94] attempted to elucidate the regulation of the production of triterpenoids
in Glycyrrhiza glabra. The authors were able to deduce lupeol synthase and oxidosqualene
cyclase cDNA responsible for the accumulation of lupeol (9) in pYES2-GgLUS1. The cDNA
was termed GgLUS1. In 2006, Guhling et al. [95] also investigated the biosynthesis of
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triterpenoinds in the stems of Ricinus communis. Cloning of two oxidosqualene cyclases
and their expression in yeast led to characterization of a cycloartenol synthase (RcCAS)
and a lupeol synthase (RcLUS). The expression of RcLUS matched the accumulation of
cuticular lupeol (9) in castor beans. Another analysis of the functions and structures of
oxidosqualene cyclase genes of the model Lotus japonicus was performed by Sawai et al.
in 2006 [96]. Two genes were recognized for the production of lupeol (9). The OSC3
gene is responsible for the production of lupeol (9), and OSC8 is responsible for the pro-
duction of lupeol (9) and β-amyrin (26). In 2006, Basyuni et al. [97] cloned triterpene
synthase (KcMS) from Kandelia candel. Expression in yeast produced a mixture of lupeol (9),
β-amyrin (26), and α-amyrin (29) in a 2:1:1 ratio. In 2007, Basyuni et al. [98] contributed to
the identification of genes responsible for the production of lupeol (9). Gene expression
of BgLUS and BgbAS from Bruguiera gymnorrhiza resulted in the production of lupeol (9)
and β-amyrin (26). Expression of RsM1 from Rhizophora stylosa produced germanicol,
β-amyrin (26), and lupeol (9) at a ratio of 63:33:4, and expression of RsM2 from Rhizophora
stylosa produced taraxerol, β-amyrin (26), and lupeol (9) at a ratio of 70:17:13. In 2010,
Wang et al. [99] described that the expression of KdLUS from Kalanchoe daigremontiana
produced lupeol (9). In 2012, Yin et al. [100] published a study dealing with the distribution
of betulin (8) and oleanolic acid (7) in various organs of white birch (Betula platyphylla) at
different ages. As part of their study, the authors determined the expression of 4 OSC
genes (LUS, β-AS, CAS1, and CAS2) involved in the triterpenoid synthesis pathways by
real-time RT-PCR. In 2015, in a study focused on Barbarea vulgaris, Khakimov et al. [101]
identified two 2,3-oxidosqualene cyclases that produce triterpenes. The main product of
LUP2 is lupeol (9), and LUP5 produces β-amyrin (26) and α-amyrin (29).

To obtain betulin (8) and betulinic acid (5) from lupeol (9) in the next step, oxida-
tion of the methyl group at C-28 must be performed. The enzymes responsible for this
oxidation belong to the class of cytochrome P450 enzymes. This topic was also reviewed
in detail in An et al. [87]. In 2011, Fukushima et al. [102] presented a study focused on
gene analysis of Medicago truncatula. The authors found a correlation between CYP716A12
and β-amyrin synthase. The in vitro assay performed by these researchers confirmed that
CYP716A12 can oxidize β-amyrin at position C-28 to produce oleanolic acid (7). Another
confirmation was performed using in vivo testing in transgenic yeast that can produce
β-amyrin by expressing CYP716A12. According to the authors, CYP716A12 was also able
to produce betulinic acid (5) by oxidation of lupeol (9) via betulin (8), and ursolic acid (7)
by oxidation of α-amyrin. In addition, the authors identified homologs of CYP716A12
in grapes encoding CYP716A15 and CYP716A17 that can also participate in the biosyn-
thesis of triterpenes. In 2012, Huang et al. [103] isolated two cDNAs from Catharanthus
roseus. The CrAS gene is responsible for encoding 2,3-oxidosqualene cyclase, and the
CrAO gene is responsible for encoding amyrin C-28 oxidase. Analysis in Saccharomyces
cerevisiae CrAO confirmed that this oxidase is able to convert α-amyrin (29), β-amyrin (26)
and lupeol (9) to ursolic acid (6) and oleanolic acid (7) by coexpressing CrAS and CrAO.
Expressing AtLUP1 from Arabidopsis thaliana instead of CrAS and CrAO in yeast produced
betulin (8) and betulinic acid (5) and small amounts of oleanolic acid (7). In 2015, Khaki-
mov et al. [101] also described cytochrome P450 (CYP72As) in addition to the previously
mentioned 2,3-oxidosqualene cyclases in their work focused on Barbarea vulgaris, which
produces triterpenes. Two cytochrome P450s (CYP716A80 and CYP716A8) were expressed
in Saccharomyces cerevisiae. These cytochrome P450s were coexpressed with Lotus japonicus
β-amyrin synthase to provide β-amyrin as a substrate. The main products were oleanolic
acid (7), erythrodiol, and two unknown oxygenated compounds of β-amyrin. Expression
of selected Barbarea vulgaris OSCs, P450s, and UGTs in Nicotiana benthamiana produced
varying levels of oleanolic acid (7), ursolic acid (6), and betulinic acid (5), which are derived
through C-28 oxidation of β-amyrin, α-amyrin, and lupeol (9). In 2016, Zhou et al. [104]
reported a gene encoding BPLO that was responsible for encoding a lupeol C-28 oxidase
from Betula platyphylla. The authors showed high activity of this gene in betulinic acid (5)
biosynthesis. The use of this oxidase will be further described in a section focusing on the
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biocatalyzed production of betulinic acid (5). In 2017, Tamura el al. [105] reported that
CYP716A179 of Glycyrrhiza uralensis functions as a triterpene C-28 oxidase. Coexpression
of various gene combinations in yeast produced triterpenoids depending on the starting
material. Coexpression of LUS, CPR, and CYP716A179 in yeast betulin (8), betulinic alde-
hyde (11), and betulinic acid (5) was produced from lupeol (9). In 2019, Huand et al. [106]
reported that RoCYP01 (CYP716A155) from Rosmarinus officinalis is able to oxidase to
convert lupeol (9) into betulinic acid (5). The use of this oxidase will be further described
in a section focusing on the biocatalyzed production of betulinic acid (5). Suzuki et al. [107]
reported one oxidosqualene cyclase and two cytochrome P450 enzymes using expression
in yeast. Coexpression of LUS/CPR/CYP716A51 produced betulinic acid (5). Betulin (8)
was also detected. Other combinations may lead to different products.

9. Biocatalyzed Production of Lupane Triterpenoids—Betulinic Acid (5), Betulin (8),
and Lupeol (9)

As mentioned earlier, whole cells can be used for the preparation of valuable com-
pounds. This section contains information about progress made in the production of
betulinic acid (5) using microorganisms, which was also partly reviewed in An et al. [87].
Here we include several new articles and articles focused on betulin (8) and lupeol (9).
This section is summarized in Table 2. In 2011, Liu et al. [108] reported optimization of
the biotransformation of betulin (8) to betulinic acid (5) catalyzed by the fungus Armillaria
luteovirens Sacc ZJUQH100-6. Tween 80 and the substrate concentration were identified as
significant factors. The optimum conditions were observed at pH 6.0 with 0.57% Tween
80, 15 mg l(-1) betulin (8), and 3 d of inoculation. The highest productivity of betulinic
acid (5) predicted according to the authors was 9.32%, which was increased by 74.53%
compared with that of the nonoptimized compound. The authors also experimentally
compared the bioconversion of betulin (8) and betulin-28-monooxygenase activities be-
tween the optimized and the nonoptimized conditions. In 2012, Bai et al. [109] described an
optimization study for betulin (8) production from Inonotus obliquus. The most significant
variables of the medium components were glucose, yeast extract, and MgSO4. The optimal
temperature was 25 ◦C, and the optimal initial pH was 6.0. The optimal concentrations
for betulin (8) production were 30 g/L glucose, 3.5 g/L yeast extract, and 5 mmol/L
MgSO4·7H2O. Under optimal conditions, the betulin (8) concentration in a 5 L stirred-tank
bioreactor reached 69.37 mg/L. The authors also indicated that mycelial growth and pellet
morphology may be critical parameters for betulin (8) production. In 2014, Wang et al. [110]
proved that increased production of betulin (8) and other natural compounds in Inonotus
obliquus can be induced in the presence of aqueous extract and methanol extract from
birch bark. Saccharomyces cerevisiae is one of the most important species of yeast and is
widely used in the production of ethanol (alcoholic beverages) and bakery products [111].
In an article by Li et al. [112], the possibility of the production of betulinic acid (5) in
Saccharomyces cerevisiae was investigated. The authors inserted genes for the synthesis of
betulinic acid (5) into yeast cells and regulated their expression to find an optimum ratio of
carbon flux between the metabolic pathway leading to betulinic acid (5) and the natural
pathway leading to fatty acids (lipids). The optimum expression levels of genes in both
pathways yielded a stable yeast culture efficiently producing betulinic acid (5). The yields
of 5 varied within the range from 0.01 to 1.92 mg L−1 OD−1. Another study focused on
increasing the yield of 5 produced by Saccharomyces cerevisiae was published in 2015 [113].
The authors hypothesized that intracellular supply of NADPH/oxygen could improve the
yield of betulinic acid (5). To test this hypothesis, the expression of mutated 2,3-butanediol
dehydrogenase (mBDH1) and yeast codon-optimized Vitreoscilla hemoglobin (mvhb) was
evaluated. The results showed that the final concentrations of betulinic acid (5) were 1.5
and 3.2 times higher. The expression of mvhb was also responsible for the inhibition of
yeast growth. An appropriate concentration of acetoin with the expression of mBDH1
was able to maintain desirable yeast growth. Next, improvement in the production of
betulinic acid (5) in Saccharomyces cerevisiae was reported in 2016 by Zhou et al. [104]. The
authors were able to identify lupeol C-28 oxidase from Betula platyphylla, as mentioned in
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the previous section. This oxidase showed high activity in the biosynthesis of betulinic
acid (5). Attention was also paid to the comparison of two yeast strains producing 5. The
WAT11 strain was evaluated as the most effective option because of its better conversion
of betulin (8) to betulinic acid (5) compared to the CEN.PK strain. The authors were also
able to construct a Gal80p mutant that produced 0.16 mg/L/OD600 betulinic acid (5). For
comparison, the wild strain produced only 0.07 mg/L/OD600.

In 2016, Lin et al. [114] obtained cell factories for the production of lupeol (9) in Saccha-
romyces cerevisiae by increasing the supply of squalene using the DNA assembler method
and by integrating Arabidopsis thaliana lupeol (9) synthesis genes into the chromosomes of
strains. The authors reported that the cell factories could produce 8.23 mg/L of lupeol (9).
In 2017, Czarnotta et al. [115] reported fermentation and purification methods for the prepa-
ration of betulinic acid. Saccharomyces cerevisiae CEN.PK BA4 was used for the process.
Excess ethanol was key for fermentation in nitrogen-limited resting cells. Purification
was performed using solid-liquid extraction without prior cell disruption. The yield of
betulinic acid (5) was 182 mg/L. According to the authors, further metabolic engineering
of the host is required because of low specific productivity and product specificity. In
2017, Arendt et al. [116] reported the production of betulinic acid (5) and its intermediates
lupeol (9), betulin (8), and betulinic aldehyde (10). According to the authors, the produc-
tion of betulinic acid (5) and 3β,20-dihydroxylupane was significantly increased in the
pah1 yeast strain after coexpressing lupeol (9) synthase from A. thaliana (AtLUP1) with the
C28-oxidase CYP716A83 from C. asiatica. In 2019, D’Adamo et al. [117] published pioneer-
ing work in the engineering of the unicellular alga Phaeodactylum tricornutum. Introducing
Lotus japonicus oxidosqualene cyclase and Medicago truncatula cytochrome P450 along with
its native reductase enabled the production of betulin (8) and its precursor lupeol (9). In
2019, Qiao et al. [118] presented biosynthetic production of lupeol (9) in Escherichia coli
and Saccharomyces cerevisiae cells by recruiting three optimized lupeol pathway genes from
different organisms. The authors introduced squalene synthase from Thermosynechococcus
elongates, squalene epoxidase from Rattus norvegicus and lupeol synthase from Olea europaea
into E. coli BL21(DE3). The evaluation showed high activities. Next, the reconstituted
lupeol pathway was transferred into two different yeast strains, WAT11 and EPY300, and
they were both compared. EPY300 showed 4.6–9.4-fold higher lupeol (9) production than
WAT11. The authors also developed a highly lupeol-producing yeast strain, named ECH-
HOe. The maximum lupeol (9) titer after 72 h of flask cultivation reached 200.1 mg/L,
which was 24.4-fold higher than that of a previously reported strain. Saccharomyces cere-
visiae is not the only yeast investigated for the production of betulinic acid (5). Yarrowia
lipolytica is one of the most studied yeast species and is capable of synthesizing valuable
metabolites according to information from an article published in 2019 [119]. In 2019, Sun
et al. [120] reported the biosynthesis of betulinic acid (5) in Yarrowia lipolytica. Substitution
of glucose with glycerol as a starting material leads to an increase in betulinic acid (5)
production. A yield of 26.53 mg/L acid 5 was achieved with 40 g/L glycerol. The use of
glycerol led to an increase in the expression of key genes in biosynthesis and increased the
supply of acetyl-CoA. Another increase in the production of betulinic acid (5) by Yarrowia
lipolytica was published by Jin et al. [121]. The systematic engineering undertaken by these
researchers led to a yield of 204.89 ± 11.56 mg/L triterpenoids. The percentage of betulinic
acid (5) in this yield was 23.71%. In the same year, Hung et al. [106] identified oxidase
RoCYP01 (CYP716A155) in Rosmarinus officinalis. This oxidase was able to effectively oxi-
dase lupeol (9) to betulinic acid (5). The authors were able to construct a yeast strain that
provided yields of betulinic acid higher than 1 g/L. In 2020, Gowers et al. [122] used the
SCRaMbLE technique (system of inducible in vivo deletion and rearrangement of synthetic
yeast chromosomes) to optimize yeast strains to produce betulinic acid (5). Automated
sample preparation, an ultrafast LC-MS method, and barcoded nanopore sequencing were
combined to rapidly isolate and characterize the best performing strains. The semiauto-
mated workflow used by the authors screened 1000 colonies. These researchers identified
and sequenced 12 strains with improvements from 2- to 7-fold in the betulinic acid titer.
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Table 2. Biocatalyzed production of lupane triterpenoids—overview.

Microorganisms Year Modification of Biosynthesis Production Reference

Armillaria luteovirens Sacc 2011 optimization of various conditions production of 5 [108]
Inonotus obliquus 2012 optimization of various conditions 69.37 mg/L of 8 [109]

Inonotus obliquus 2014 yield increase with aqueous extract and
methanol extract from birch bark increased production of 8 [110]

Saccharomyces cerevisiae 2014 insertion and expression regulation of genes 5 from 0.01 to 1.92 mg L−1

OD−1 [112]

Saccharomyces cerevisiae 2015 changes in intracellular supply of
NADPH/oxygen

1.5 and 3.2 times higher
production of 5 [113]

Gal80p mutant of
Saccharomyces cerevisiae 2016 up-regulation of the expressed genes 0.16 mg/L/OD600 of 5 [104]

Saccharomyces cerevisiae 2016 increase in the supply of squalene 8.23 mg/L of 9 [114]
Saccharomyces cerevisiae

CEN.PK BA4 2017 usage of excess of ethanol 182 mg/L of 5 [115]

2017 [116]

Phaeodactylum tricornutum 2019
introduction of Lotus japonicus oxidosqualene
cyclase and Medicago truncatula cytochrome

P450 with native reductase
production of 8 and 9 [117]

Escherichia coli and
Saccharomyces cerevisiae 2019 usage of optimized lupeol pathway genes production of 9 [118]

Yarrowia lipolytica 2019 usage of glycerol as a starting material 26.53 mg/L of 5 [120]

Yarrowia lipolytica 2019 systematic metabolic engineering 204.89±11.56 mg/L of
triterpenoids (23.71% of 5) [121]

Saccharomyces cerevisiae 2019 usage of RoCYP01 (CYP716A155) yields of 5 higher than 1 g/L [106]
various yeast strains 2020 SCRaMbLE technique production of 5 [122]

10. Enzymatic Modification of Betulinic Acid (5) and Betulin (8)

Selected chemical methodologies for amidation, esterification, and hydrolysis have
already been mentioned in the previous section. This section contains information about
chemoenzymatic modification of derivatives of betulinic acid (5), betulin (8), and lupeol (9).
In 1999, Chatterjee et al. [123] investigated the metabolic biotransformation of betulinic
acid (5) in a selected fungal model system (Cunninghamella species NRRL 5695). This
investigation led to the discovery of the conjugate 28-O-β-D-glucopyranosyl 3β-hydroxy-
lup-20(29)-en-28-oate (33) (Scheme 7). Thirteen other fungal cultures were also tested by
the authors for the preparation of the same compound, but only Cunninghamella species
NRRL 5695 exhibited the ability to produce the exact glucopyranosyl ester 33. Biological
evaluation of its cytotoxic activity against several human melanoma cell lines showed no
interesting activity in comparison with betulinic acid (5) [123].
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In 2008, Yasin et al. published work in which response surface methodology was
used to determine the optimal conditions for enzymatic synthesis of betulinic acid benzoyl
ester 34. Novoenzym 435, benzoyl chloride, and betulinic acid (5) were used as model
components for their study. The experimental yield was 48.5% under the optimal conditions
(Scheme 8) [124].
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Using the same methodology, two years after the first pioneering work with Novoen-
zym 435, Ahmad et al. published another optimization study of the synthesis of es-
ter 34. Instead of acyl chloride, phthalic anhydride was used as the acylating reagent, and
CHCl3/hexane was used as the solvent system. The experimental yield was 64.7% under
the optimal conditions (Scheme 9) [125].
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In the same year, Ahmad et al. also published an article dealing with the preparation of
3-O-acylated betulinic acid derivatives 35a–35j catalyzed by Novoenzym 435. Appropriate
anhydrides were used as acylating reagents (Scheme 10). The anticancer activity of these
derivatives was also evaluated in this study in vitro against human lung carcinoma (A549)
and human ovarian (CAOV3) cancer cell lines. The most promising results were shown
by 3-O-glutarylbetulinic acid 35j, 3-O-acetyl-betulinic acid 35g, and 3-O-succinyl-betulinic
acid 35e against the A549 cancer cell line (IC50 < 10 µg/mL). Both derivatives had better
cytotoxic activity than betulinic acid (5) [126].
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In 2012, Mao et al. [127] reported the biotransformation of betulin (8) by the yeast
strain Rhodotorula mucilaginosa. This yeast converted 52.65% of the added 4 mg/mL betulin
to betulone and 11,14-octadecadienoic acid methyl ester under optimal conditions (initial
pH 6.0, 20 ◦C for 1 d). In 2016, Yusof et al. optimized the conditions for the enzymatic
synthesis of betulinic acid amide 36. Novoenzym 435 from Candida antartica was used as a
catalyst for enzymatic amidation, and butylamine was used as an amine reagent that was
coupled with betulinic acid (5). Using the optimal conditions gave the product in 64.6%
yield (Scheme 11) [128].



Molecules 2021, 26, 2271 19 of 26Molecules 2021, 26, x FOR PEER REVIEW 20 of 28 
 

 
Scheme 11. Optimal conditions for enzymatic amidation of betulinic acid [128]. Reagents and conditions: (i) butyl amine 
(1 eq.), Novoenzym 435 (100 mg), and chloroform:hexane/(9:1), 40 °C, 24 h. 

In 2017, Guo et al. reported a one-step enzymatic synthesis of liposomes of folate–
poly(ethyleneglycol)3400–cholesterol conjugates. The prepared liposomes were loaded 
with betulinic acid (5) by the thin lipid film method. In vitro testing on HepG2 cells 
showed enhanced cytotoxic activity of folate-functionalized liposomes (IC50 = 63.07 ± 2.22 
μg/mL) compared to normal liposomes loaded with betulinic acid (5) (IC50 = 93.14 ± 2.19 
μg/mL) [129]. In 2019, Dai et al. [130] identified a novel CYP enzyme that catalyzes C-2α 
hydroxylation in Crataegus pinnatifida. It can oxidize oleanane-, ursane- and lupane-type 
pentacyclic triterpenoids. Application in yeast led to the production of 384, 141, and 23 
mg/L maslinic acid (a derivative of oleanolic acid [7]), corosolic acid (a derivative of 
oleanolic acid [7]), and alphitolic acid (a derivative of betulinic acid), respectively. 

11. Hydrolysis of Sugar Esters of Betulinic Acid 
In 1999, Chatterjee and coworkers described enzymatic hydrolysis of a prepared de-

rivative of betulinic acid 33 by the action of the enzyme β-glucosidase. Betulinic acid (5) 
was identified as a single product of this transformation [123] (Scheme 12). 

HO

O

O

O

OH

OH
HO

OH

HO

O

OH(i)

33 5  
Scheme 12. Enzymatic hydrolysis catalyzed by β-glucosidase [123]. Reagents and conditions: (i) ß-glucosidase, N,N-di-
methyl-formamide, and phosphate buffer (pH 5), 37 °C, 72 h. 

In 2009, Gauthier et al. described the preparation of 28-O-β-D-glucuronide betulinic 
acid 37 from peracetylated methyl glucuronate bromide under phase-transfer conditions. 
It was also described that derivative 37 could be used as a prodrug in anticancer treatment 
because of its noncytotoxicity, nonhemolyticity, and better water solubility, and it showed 
good in vitro stability in phosphate buffer. In vitro complete hydrolysis to betulinic acid 
could be achieved by the action of enzymatic β-D-glucuronidase (Escherichia coli) (Scheme 
13) [131]. 

Scheme 11. Optimal conditions for enzymatic amidation of betulinic acid [128]. Reagents and conditions: (i) butyl amine
(1 eq.), Novoenzym 435 (100 mg), and chloroform:hexane/(9:1), 40 ◦C, 24 h.

In 2017, Guo et al. reported a one-step enzymatic synthesis of liposomes of folate–
poly(ethyleneglycol)3400–cholesterol conjugates. The prepared liposomes were loaded with
betulinic acid (5) by the thin lipid film method. In vitro testing on HepG2 cells showed
enhanced cytotoxic activity of folate-functionalized liposomes (IC50 = 63.07 ± 2.22 µg/mL)
compared to normal liposomes loaded with betulinic acid (5) (IC50 = 93.14 ± 2.19 µg/mL)
[129]. In 2019, Dai et al. [130] identified a novel CYP enzyme that catalyzes C-2α hydroxy-
lation in Crataegus pinnatifida. It can oxidize oleanane-, ursane- and lupane-type pentacyclic
triterpenoids. Application in yeast led to the production of 384, 141, and 23 mg/L maslinic
acid (a derivative of oleanolic acid [7]), corosolic acid (a derivative of oleanolic acid [7]),
and alphitolic acid (a derivative of betulinic acid), respectively.

11. Hydrolysis of Sugar Esters of Betulinic Acid

In 1999, Chatterjee and coworkers described enzymatic hydrolysis of a prepared
derivative of betulinic acid 33 by the action of the enzyme β-glucosidase. Betulinic acid (5)
was identified as a single product of this transformation [123] (Scheme 12).
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In 2009, Gauthier et al. described the preparation of 28-O-β-D-glucuronide betulinic
acid 37 from peracetylated methyl glucuronate bromide under phase-transfer conditions.
It was also described that derivative 37 could be used as a prodrug in anticancer treat-
ment because of its noncytotoxicity, nonhemolyticity, and better water solubility, and it
showed good in vitro stability in phosphate buffer. In vitro complete hydrolysis to be-
tulinic acid could be achieved by the action of enzymatic β-D-glucuronidase (Escherichia
coli) (Scheme 13) [131].
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12. Microbial Oxidation of Betulinic Acid (5)

As previously mentioned, one of the most significant disadvantage of betulinic acid (5)
is the low solubility and bioavailability. Most of the time, this problem is solved by the
introduction of a polar moiety that is capable of improving of the pharmacological pro-
file. Microbial transformations, however, offer another option for increasing the polarity,
through introduction of hydroxyls in certain position of the triterpenic skeleton by en-
zymatic oxidation. This oxidation is usually performed by cytochromes P-450 in living
bacteria or fungi. A great advantage of this procedure is that all microorganisms introduce
the hydroxyls highly stereospecifically, and they are also very selective in which positions
they modify. As early as in 2000, Chtterjee et al. published the use of Bacillus megaterium
ATCC 13368 for the introduction of hydroxyls into the skeleton of betulinic acid (5) in posi-
tions 11α, 1β, 7β, and 15α [132]. The same research group in Kouzi et al. describe a more
comprehensive approach, using three microorganisms—Bacillus megaterium ATCC 14581,
Cunninghamella elegans ATCC 9244, and Mucor mucedo UI-4605—to introduce hydroxyls
into the positions 1β, 6α, and 1β [133]. In 2007, Bastos et al. studied the metabolization
of acid 5 in three fungi species (Arthrobotrys, Chaetophoma, and Dematium) and obtained
products monohydroxylated in the position 7β, 15α, 25, or 30 [134]. Various strains of bac-
teria Bacillus megaterium, Streptomyces fragilis, Cunninghamella elegans, and Aspergillus terreus
were used by Goswami et al. in 2015 to obtain a number of hydroxyanalogues of betulinic
acid (5) in [135]. In 2021, two fungi species Circinella muscae and Cunninghamella echinulate
were used to produce a number of hydroxyderivatives of acid 5 [136]. A summary of the
possible transformations is shown in Figure 5.
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13. Conclusions and Future Perspectives

Pentacyclic triterpenes are important natural products with a variety of biological
activities that predetermine them as potential drugs. To optimize the properties (e.g.,
activity, solubility, bioavailability, and susceptibility to metabolism) of the original active
molecules, structures usually need to be slightly modified. Most of the time, this modi-
fication has been achieved by standard methods of organic synthesis. At present, these
methods enable almost unlimited varieties of chemical transformations, but they have
several drawbacks. In some cases, harsh reaction conditions, such as high temperatures,
long reaction times, and environmentally dangerous or toxic reagents, must be used. In
other cases, it is almost impossible to obtain enantiomerically or diastereomerically pure
compounds. In these cases, enzymatic synthesis or biocatalysis may offer a successful
alternative. Enzymes usually work under mild conditions and produce pure enantiomers
or diastereoisomers. This property is especially of interest in the synthesis of triterpenic
saponines and prodrugs. This selectivity is also demonstrated in Section 12, where various
species use different cytochromes P450 to introduce hydroxyls into the lupane skeleton
with high regioselectivity and stereospecifity. A number of enzymes were developed
to be able to perform the reactions in organic solvents, rather than only in water-based
media. To date, enzymes have rarely been used to modify lupane triterpenoids, but they
are often used in the synthesis of other analogs of pentacyclic triterpenes [18], and there
is no reason why they should not work with lupanes. Along with the currently known
and used esterification or amidation of lupane acids and their hydrolysis, there is much
room for other reactions, such as redox reactions catalyzed by various cytochromes P450 to
get specifically modified triterpenes in the ways described in Section 12 of this review. In
addition, one may expect that there is great potential to mutate squalene cyclase to obtain
completely new types of triterpenoid skeletons that are still unknown. These completely
new, artificial triterpenoids may represent a large platform for entirely new terpenoid
chemistry. For example, in 2013, Okamoto and Sato [137] described the formation of two
unnatural pentacyclic triterpenes formed by head-to-tail cyclization from acyclic triterpene
β-hexaprene using tetraprenyl-β-curcumene cyclase from Bacillus subtilis. In conclusion,
enzymatic catalysis and biosynthesis in the field of lupane triterpenoids have not been
fully elucidated and offer many interesting topics to study.
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17. Patočka, J. Biologically Active Pentacyclic Triterpenes and Their Current Medicine Signification. J. Appl. Biomed. 2003, 1, 7–12.

[CrossRef]
18. Luchnikova, N.A.; Grishko, V.V.; Ivshina, I.B. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules 2020, 25,

5526. [CrossRef] [PubMed]
19. Cichewicz, R.H.; Kouzi, S.A. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention

and Treatment of Cancer and HIV Infection. Med. Res. Rev. 2004, 24, 90–114. [CrossRef] [PubMed]
20. Zhang, D.-M.; Xu, H.-G.; Wang, L.; Li, Y.-J.; Sun, P.-H.; Wu, X.-M.; Wang, G.-J.; Chen, W.-M.; Ye, W.-C. Betulinic Acid and Its

Derivatives as Potential Antitumor Agents. Med. Res. Rev. 2015, 35, 1127–1155. [CrossRef]
21. Zhang, X.; Hu, J.; Chen, Y. Betulinic Acid and the Pharmacological Effects of Tumor Suppression (Review). Mol. Med. Rep. 2016,

14, 4489–4495. [CrossRef]
22. Hussain, H.; Green, I.R.; Ali, I.; Khan, I.A.; Ali, Z.; Al-Sadi, A.M.; Ahmed, I. Ursolic Acid Derivatives for Pharmaceutical Use: A

Patent Review (2012-2016). Expert. Opin. Ther. Pat. 2017, 27, 1061–1072. [CrossRef] [PubMed]
23. Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, Oleanolic and Betulinic Acids: Antibacterial Spectra and

Selectivity Indexes. J. Ethnopharmacol. 2008, 120, 272–276. [CrossRef] [PubMed]
24. Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016, 146,

201–213. [CrossRef]
25. Lin, C.; Wen, X.; Sun, H. Oleanolic Acid Derivatives for Pharmaceutical Use: A Patent Review. Expert Opin. Ther. Pat. 2016, 26,

643–655. [CrossRef] [PubMed]
26. Pollier, J.; Goossens, A. Oleanolic Acid. Phytochemistry 2012, 77, 10–15. [CrossRef]
27. Rodríguez, J.A.; Astudillo, L.; Schmeda-Hirschmann, G. Oleanolic Acid Promotes Healing of Acetic Acid-Induced Chronic

Gastric Lesions in Rats. Pharmacol. Res. 2003, 48, 291–294. [CrossRef]
28. Urban, M.; Kvasnica, M.; Dickinson, N.J.; Sarek, J. Biologically Active Triterpenoids Usable As Prodrugs. In Terpenoids and

Squalene: Biosynthesis, Functions and Health Implications; Bates, A.R., Ed.; Nova Science Publishers: New York, NY, USA, 2015;
Volume 2015, ISBN 978-1-63463-656-8.

29. Zhou, M.; Zhang, R.-H.; Wang, M.; Xu, G.-B.; Liao, S.-G. Prodrugs of Triterpenoids and Their Derivatives. Eur. J. Med. Chem. 2017,
131, 222–236. [CrossRef]

30. Ríos, J.L.; Máñez, S. New Pharmacological Opportunities for Betulinic Acid. Planta Med. 2018, 84, 8–19. [CrossRef]
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