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Genetic Markers in Triple-Negative Breast Cancer
Zuzana Sporikova, Vladimira Koudelakova, Radek Trojanec, Marian Hajduch

Abstract
Triple-negative breast cancer (TNBC) accounts for 15% to 20% of breast cancer cases and is characterized by the
absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Though TNBC is a highly
heterogenic and aggressive disease, TNBC patients have better response to neoadjuvant therapy compared to other
breast cancer subtypes. Nevertheless, patients with residual disease have a very poor prognosis, with higher prob-
ability of relapse and lower overall survival in the first years after diagnosis. TNBC has 6 subtypes with distinct
molecular signatures with different prognoses and probably different responses to therapy. The precise stratification of
TNBC is therefore crucial for the development of potent standardized and targeted therapies. In spite of intensive
research into finding new molecular biomarkers and designing personalized therapeutic approaches, BRCA muta-
tional status is the only clinically validated biomarker for personalized therapy in TNBC. Recent studies have reported
several promising biomarkers that are currently being validated through clinical trials. The objective of this review was
to summarize the clinically relevant genetic markers for TNBC that could serve as diagnostic, prognostic, or predictive
or could improve personalized therapeutic strategies.
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Introduction
Breast cancer is the leading cause of cancer death in women

worldwide, and triple-negative breast cancer (TNBC) accounts for
approximately 15% to 20% of all new cases. All TNBC subtypes
share a common gene expression pattern: the absence of estrogen
receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2; also known as ERBB2) expres-
sion.1,2 Despite these shared features, TNBC is a highly heteroge-
neous disease that can be divided into many distinct subgroups
according to clinical, histopathologic, and molecular profiles.3

TNBC patients are typically young (< 40 years), are African
American, and have shorter progression-free survival and overall
survival (OS) relative to non-TNBC breast cancer patients.4-8 The
disease also follows a more aggressive course, characterized by higher
relapse rates and worse prognosis, than hormone receptorepositive
tumors.4,5 The insidiousness of TNBC lies in the high prevalence of
highly proliferating grade 3 tumors at diagnosis.9 Additional features
of TNBC include a peak in recurrence between 1 and 3 years after
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diagnosis (hazard ratio ¼ 2.6; P < .0001), as well as a majority of
deaths occurring within 5 years of therapy (hazard ratio ¼ 3.2; P <

.0001) compared to non-TNBC phenotypes.7 TNBC patients
usually experience better pathologic complete response rates (pCR)
after neoadjuvant chemotherapy (pCR rates in 30%-40%). More-
over, TNBC patients who experience pCR have excellent long-term
clinical outcome. However, TNBC patients with residual disease
after neoadjuvant chemotherapy have very poor prognosis.1 The
recurrence of TNBC is associated with a high risk of metastasis to
the lungs or central nervous system, a lower risk of bone metastasis,
and a dismal median survival of approximately 1 year.7,10-12

The intricacy of this disease is further illustrated by the high
prevalence of rare histopathologic subtypes such as metaplastic
(90%), medullary (95%), and apocrine (40%-60%) carcinomas.13

When both the poor prognosis facing TNBC patients and the
lack of a recognized predictor of therapy response are considered,
the need to identify specific markers that can be targeted by tailored
therapies or used to predict response to chemotherapy is
indisputable.

This review focuses on genetic alterations in TNBC that could
serve as predictive markers of prognosis, which will help in selecting
a suitable chemotherapy approach and/or inspire further research.

Intrinsic Subgroups of Breast Cancer
Breast cancer comprises a heterogeneous group of diseases that

can be, according to gene expression profiles, classified into luminal
Clinical Breast Cancer October 2018 - e841

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.clbc.2018.07.023&domain=pdf
mailto:vladimira.koudelakova@upol.cz
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.clbc.2018.07.023


e842

Genetic Markers in TNBC
Author's Personal Copy
A, luminal B, basal-like, normal-like and HER2-enriched sub-
groups.14,15 The PAM50 assay, a 50-gene subtype predictor, was
developed on the basis of these expression profiles.16 These so-called
intrinsic subgroups of breast cancer show differences in incidence,
age at diagnosis, prognosis, and response to treatment.15,17

At the morphologic level, TNBC and basal-like breast cancer
(BLBC) are similar in terms of larger tumor size, higher grade,
presence of geographic necrosis, enhanced invasive potential, and
stromal lymphocytic infiltration.7,12,18,19 However, the gene
expression profiles of only 71% of TNBC samples are clustered as
basal-like. Moreover, only 77% of the basal-like tumors bear TNBC
signatures.20 This observation was confirmed through the molecular
characterization of 412 TNBC and 473 basal-like (based on
PAM50 subtype prediction) breast cancer samples.21 Using this
approach, 21.4% of TNBC samples were not assigned as BLBC,
and 31.5% of BLBC samples did not display a TNBC profile. Out
of 412 TNBC samples, 78.6% were identified as BLBC, 7% as
normal-like, 7.8% as HER2 enriched, 4.4% as luminal B, and 2.2%
as luminal A.

TNBC Subtypes
Once the molecular heterogeneity of TNBC was recognized,

subsequent research focused on classifying TNBC subtypes on the
basis of disease prognosis or the expected response to systemic
therapy. Groundbreaking work identified 6 different TNBC gene
expression profile subtypes from 587 TNBC cases identified in 21
gene expression data sets using a top-down approach of hierarchical
clustering.22 The subtypes were named according to their expression
patterns: basal-like 1 and 2 (BL1/2), immunomodulatory (IM),
mesenchymal (M), mesenchymal stemelike (MSL), and luminal
androgen receptor (LAR) (Table 1). Following this classification,
approximately 30 TNBC cell lines have been identified as models of
the distinct subtypes and are used to investigate which pharmaco-
logic strategies are most effective against each subtype.

Both BL1 and BL2 subtypes are sensitive to DNA-damaging
agents (such as cisplatin) and show elevated expression of cell-
cycle and DNA damage-response genes. While BL1 is characterized
Table 1 Triple-Negative Breast Cancer Subtype Characterization22

Subtype Signaling Pathways Important Marker

BL1 Cell cycle, proliferation, DNA damage
pathways

ATR, BRCA, MYC, NRAS,

BL2 Cell cycle, proliferation, growth factor
signaling, glycolysis, gluconeogenesis

EGFR, MET, EPHA2, TP

IM Immune cell signaling processes JAK1/2, STAT1/4, IRF1/7/8
M EMT, cell motility, differentiation,

proliferation
Wnt, ALK, TGF-b

MSL EMT, cell motility, differentiation, growth
factor signaling, angiogenesis

EGFR, PDGFR, ERK1/2, VE

LAR Androgen/estrogen metabolism,
steroid synthesis, porphyrin metabolism

AR, FOXA1, KRT18, XB

Abbreviations: ALK ¼ anaplastic lymphoma receptor tyrosine kinase; AR ¼ androgen receptor; ATR ¼
cancer gene; EGFR ¼ epidermal growth factor receptor; EMT ¼ epithelialemesenchymal transi
FOXA1 ¼ forkhead box A1; Hsp90 ¼ heat shock protein 90; IM ¼ immunomodulatory; IRF1/7/8 ¼ in
KRT18 ¼ keratin 18; LAR ¼ luminal androgen receptor; M ¼ mesenchymal; MET ¼ hepatocyte grow
MYC ¼ MYC proto-oncogene; NRAS ¼ neuroblastoma Ras; PARP ¼ poly(ADP-ribose) polymerase; P
proto-oncogene; STAT1/4 ¼ signal transducer and activator of transcription 1/4; TGF-b ¼ transfor
vascular endothelial growth factor receptor 2; Wnt ¼ Wnt family member; XBP1 ¼ X-box binding p
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by heightened expression of both cell division and DNA damage-
response genes, as well as elevated Ki-67 expression, BL2 displays
up-regulated growth factor signaling, glycolysis, and gluconeogenesis
along with increased expression of myoepithelial markers.22

Both M and MSL subtypes are characterized by decreased distant
metastasis-free survival and positive response to phosphoinositide 3-
kinase (PI3K)/mechanistic target of rapamycin (mTOR) inhibitors
and dasatinib. The gene expression profiles of the M and MSL
subtypes overlap with that of chemoresistant metaplastic breast
cancer and display the up-regulation of genes involved in
epithelialemesenchymal transition, cell motility, extracellular
matrix remodeling, and cellular differentiation. Unlike the M sub-
type, which displays overexpression of proliferation genes, the MSL
subtype is enriched in mesenchymal stem-celleassociated genes and
shows up-regulation of genes involved in angiogenesis and growth
factor pathways. The MSL subtype overlaps with the previously
described claudin-low subtype, as both demonstrate reduced claudin
3, 4, and 7 expression.22,24

The IM subtype is characterized by increased expression of
immune signaling genes (immune cell and cytokine signaling, an-
tigen processing and presentation, core immune signaling path-
ways). The IM expression profile overlaps with the molecular
signature of medullary breast cancer, and both classifications share a
good prognosis.2,25 Expression profile of IM subtype is generated by
tumor-infiltrating lymphocytes (TILs) rather than tumor cells
itself.26 The robust presence of TILs has been found in approxi-
mately 20% of TNBC and was found to be an independent
prognostic marker in TNBC. The BIG 02-98, ECOG 2197, and
ECOG 1199 trials demonstrated very similar results, with 15% to
20% reduction in any recurrence and mortality for every 10%
increase in stromal TILs.27-29 The presence of TILs is associated
with better response to both adjuvant and neoadjuvant therapy, and
could serve as marker of better outcome when detected in residual
tumor after neoadjuvant therapy.27,30-32

The final subtype, LAR, is enriched in genes involved in hor-
mone signaling, steroid synthesis, and androgen/estrogen meta-
bolism, including overexpression of androgen receptor (AR) and its
s Chemosensitivity23 Potential Therapy

Ki-67 Very good Cisplatin, PARP inhibitors

53 Very poor Cisplatin; PARP and growth factor
inhibitors

, TNF Medium —

Medium PI3K/mTOR, Src inhibitors

GFR2 Medium PI3K/mTOR, Src inhibitors

P1 Poor AR antagonist; PI3K, Hsp90 inhibitors

ataxia telangiectasia and Rad3 related; BL1 ¼ basal-like 1; BL2 ¼ basal-like 2; BRCA ¼ breast
tion; EPHA2 ¼ ephrin type A receptor 2; ERK1/2 ¼ mitogen-activated protein kinase 1/2;
terferon regulatory factor 1; JAK1/2 ¼ Janus kinase 1/2; Ki-67 ¼ marker of proliferation Ki-67;
th factor receptor; MSL ¼ mesenchymal stemelike; mTOR ¼ mechanistic target of rapamycin;
DGFR ¼ platelet-derived growth factor receptor; PI3K ¼ phosphoinositide 3-kinase; Src ¼ SRC
ming growth factor b; TNF ¼ tumor necrosis factor; TP53 ¼ tumor protein P53; VEGFR2 ¼
rotein 1.
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downstream targets and coactivators. Patients with the LAR subtype
show shorter relapse-free survival. This subtype overlaps with the
previously described molecular apocrine group.33 One possible
therapy regimen for this subtype targets the AR antagonist (ie,
flutamide, enzalutamide, bicalutamide).34 Moreover, LAR-subtype
cell lines are sensitive to PI3K inhibitors as a result of a mutation
in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit a (PIK3CA) kinase domain.2

A study clarifying the clinical relevance of the 7-subtype classi-
fication of TNBC revealed differences in pCR after neoadjuvant
chemotherapy (P ¼ .044) and found the TNBC subtype to be an
independent predictor of pCR status (P ¼ .022) by a likelihood
Table 2 Summary of Triple-Negative Breast Cancer Important Gene

Gene Localization Alteration Type Main Function

TP53 17p13.1 Inactivating mutation Genome integrity, D
repair and apoptos

BRCA1 17q21.31 Inactivating mutation,
epigenetic changes

DNA double-strand br
repair

BRCA2 13q13.1

PIK3CA 3q26.32 Activating mutation Survival, differentiati
proliferation

PTEN 10q23.31 Deletion, inactivating
mutation

INPP4B 4q31.21 Deletion

EGFR 7p11.2 Amplification, overexpression Cell proliferation, meta

FGFR1 8p11.23 Amplification Proliferation, surviva
migration, differentia

FGFR2 10q26.13

VEGFRA 6p21.1 Overexpression, amplification,
mutation

Angiogenesis, invasi
metastases

VEGFRB 11q13.1

VEGFRC 4q34.3

AR Xq12 Overexpression Cell signaling

BCL2 18q21.33 Overexpression Antiapoptotic

Abbreviations: TP53 ¼ tumor protein P53; PTEN ¼ phosphatase and tensin homolog; INPP4B ¼ inosit
C ¼ vascular endothelial growth factor receptor A/B/C; AR ¼ androgen receptor; BCL2 ¼ B-cell lymph
PI3K ¼ phosphoinositide 3-kinase; AKT ¼ AKT serine/threonine kinase; mTOR ¼ mechanistic target o
fluorouracil; BRCA1/2 ¼ breast cancer gene 1/2; FGFR1/2 ¼ fibroblast growth factor receptor 1/2; P
ratio test. BL1 showed the highest pCR rate (52%), while BL2 and
LAR subtypes showed the lowest rates (0% and 10%,
respectively).23

Genetic Markers in TNBC
The molecular and genetic profiles of TNBC, known for its

enormous complexity and diversity, continue to challenge
researchers all around the world. As mentioned above, TNBC
tumors are characterized by the lack of ER, PR, and HER2
expression. The lack of therapeutic targets complicates efforts to
characterize TNBC with certain molecular markers in a bid to
improve disease outcome. To date, two large studies have focused
tic Markers

Prognostic Significance Predictive Significance References

NA
is

Poor prognostic factor, worse
OS and increased metastatic

risk

Poor response to
chemotherapy

37-43

eak Poor prognostic factor Higher response to
neoadjuvant anthracycline

and taxane therapy, response
to platinum-based therapy,
potential predictor for

response to PARP inhibitors

23,44-50

on, Poor prognostic factors Potential predictors for
response to PI3K/AKT/mTOR

inhibitors

51-53

Higher sensitivity to
combination therapy of PI3K
and androgen receptor

inhibitors

54,55

stasis Poor prognostic factor Potential predictor for
response to anti-EGFR

therapy

56-58

l,
tion

Unknown In vitro sensitivity to FGFR
ATP-competitive inhibitor

brivanib

59-62

In vitro sensitivity to FGFR
ATP-competitive inhibitor

PD173074

59,63

on, Unknown Addition of bevacizumab to
chemotherapy significantly

elevates pCR rates

28,48,64-67

Controversial; probably better
DFS and OS

Lower sensitivity to
chemotherapy, higher

sensitivity to AR inhibitors
(enzalutamide, bicalutamide),
PI3K inhibitors, and their

combination

23,68-72

Positive prognostic factor Negative predictor of
response to neoadjuvant and
adjuvant anthracycline-based

chemotherapy, positive
predictor of response to CMF

treatment

73-76

ol polyphosphate-4-phosphatase type II B; EGFR ¼ epidermal growth factor receptor; VEGFR A/B/
oma 2; DFS ¼ disease-free survival; OS ¼ overall survival; PARP ¼ poly(ADP-ribose) polymerase;
f rapamycin; pCR ¼ pathologic complete response; CMF ¼ cyclophosphamide, methotrexate, 5-
IK3CA ¼ phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit a.
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on the genetic basis of TNBC.35,36 Genetic markers that influence
prognosis and/or prediction of appropriate therapy are summarized
in Table 2 and visualized in Figure 1.

The exome-sequencing, RNA-sequencing, high-resolution single
nucleotide polymorphism arrays and targeted deep resequencing
were performed on 104 primary TNBC samples grouped into
various subsets to reveal the patterns of somatic mutation.35 The
most frequent copy number aberrations were identified for the
PARK2 (Parkinson disease 2) (6%), RB1 (retinoblastoma gene 1)
(5%), PTEN (phosphatase and tensin homolog) (3%), and EGFR
(epidermal growth factor receptor) (5%) genes. TP53 mutations
were found to be the most common somatic aberration, observed in
53.8% of cases, while the TNBC samples also showed frequent
mutations in the PIK3CA (10.2%), USH2A (usher syndrome 2A)
(9.2%), MYO3A (myosin IIIA) (9.2%), PTEN, and RB1 genes
(7.7%). However, only a minority of mutations (36%) were tran-
scribed into mRNA.35

The Cancer Genome Atlas Group analyzed samples from 463
patients using genomic DNA copy number arrays, DNA methyl-
ation, exome sequencing, mRNA arrays, microRNA sequencing,
and reverse-phase protein arrays.36 In a group containing 93 basal-
like tumors (76 TNBCs), the most commonly mutated genes were
found to be TP53 (80%), PIK3CA (9%), MLL3 (lysine
Figure 1 Genetic Markers and Their Aberrations That Influence Pro

Abbreviations: AKT ¼ AKT serine/threonine kinase; BCL ¼ B-cell lymphoma; BRCA1/2 ¼ breast canc
receptor; FGFR1/2 ¼ fibroblast growth factor receptor 1/2; INPP4B ¼ inositol polyphosphate-4-p
rapamycin; MYO3A ¼ myosin IIIA; PARK2 ¼ Parkinson disease 2; PI3K ¼ phosphoinositide 3-kina
protein P53; USH2 ¼ Usher syndrome 2; VEGFR ¼ vascular endothelial growth factor receptor.

- Clinical Breast Cancer October 2018
methyltransferase 2C) (5%), AFF2 (AF4/FMR2 family member 2)
(4%), RB1 (4%), and PTEN (1%). Copy number alterations were
observed in several chromosomal regions or genes, namely ampli-
fication or gain of MYC (MYC protooncogene) (40%), (E3
ubiquitin-protein ligase Mdm2) (14%), CCNE (cyclin E1) (9%), as
well as the 1q and 10p regions, along with loss of PTEN, RB1,
INPP4B (inositol polyphosphate-4-phosphatase type II B) (30%),
and the 8p and 5q regions. Heightened CDKN2A (cyclin-depen-
dent kinase inhibitor 2A) expression, decreased RB1 expression, and
high genomic instability were also found to be typical features of the
BLBC profile.36

The discovery of the fusion gene EML4-ALK (echinoderm
microtubule-associated protein-like 4-anaplastic lymphoma kinase)
in nonesmall-cell lung cancer fueled interest in finding such a
structural rearrangement in breast carcinomas, particularly in
TNBC.77,78 An enrichment in most known MAGI3-AKT3
(membrane-associated guanylate kinaseeAKT serine/threonine
kinase 3) translocation as well as rearrangements involving the
NOTCH1/2 (Notch 1/2) and MAST (microtubule-associated
serineethreonine kinase) genes, were identified in TNBC by whole
exome sequencing.77,79

As was mentioned above, TNBC disease showed higher sensi-
tivity to neoadjuvant chemotherapy, but patients with residual
gnosis And/Or Prediction of TNBC

er gene 1/2; CDKN2A ¼ cyclin-dependent kinase inhibitor 2A; EGFR ¼ epidermal growth factor
hosphatase type II B; MLL3 ¼ lysine methyltransferase 2C; mTOR ¼ mechanistic target of
se; PTEN ¼ phosphatase and tensin homolog; RB1 ¼ retinoblastoma gene 1; TP53 ¼ tumor
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disease have very poor prognosis. Identification of targetable alter-
ation in residual tumor is therefore necessary.80 The genomic profile
of tumor has been shown to be frequently altered during chemo-
therapy. Several studies comparing pretreatment and posttreatment
biopsy samples found significant changes mainly in cell-cycle reg-
ulators and PI3K/mTOR pathway.81,82 These genomic changes
could be the reason for resistance to conventional chemotherapies
and identification of new druggable targets in posttreatment biopsy
samples could significantly improve TNBC outcome. Molecular
analysis of posttreatment biopsy samples is therefore necessary in
TNBC patients who do not experience pCR after neoadjuvant
chemotherapy.

TP53 Gene
TP53 is one of the most important genes involved in maintaining

homeostasis and genomic integrity throughout cell-cycle arrest, DNA
repair, and apoptosis. Alterations ofTP53 associated with aberrant p53
expression have been described in numerous types of human cancers as
well as in all breast cancer subtypes.83 Expression of mutant p53 was
found to be associated with high proliferation rate, early disease
recurrence, and early death in node-negative breast cancer.37 In breast
cancer, the DNA-binding domain is the most frequently mutated area
of the TP53 gene, and missense substitutions were identified as the
culprit behind unfavorable breast cancer outcomes.35,36,84 While
missense mutations have been found to be predominantly associated
with the luminal subtype, nonsense and frameshift changes are preva-
lent in basal-like tumors.36 Generally, TP53 mutations are more
common in ER-negative breast cancers than in breast cancers with ER
expression.38,85 Moreover, ER-negative patients with p53 expression
(TNBC and HER2-positive subtypes) were reported to have a better
prognosis, while p53 expression in ER-positive patients was related to a
worse prognosis.38,39

In TNBC, TP53 is the most frequently mutated gene, with mu-
tations occurring in 65% to 80% of cases.35,36 In one of the most
extensive studies to date, mutations in TP53 were found in 62% of
basal-like and 43% nonbasal TNBC.35 In the context of TNBC,
these mutations result in increased genetic instability and cytogenetic
changes, as well as a higher probability of loss of heterozygosity.86,87

Recent studies have shown worse OS and increased metastatic risk in
TNBC patients with decreased p53 function.40,56 However, another
study did not confirm that mutations of TP53 and/or p53 expression
are prognostic factors; nevertheless, discrepancies between TP53
mutation and p53 expression could be a potential predictor of poor
outcome in TNBC.88 Other studies found TP53 mutations to be a
predictor of chemoresistance in TNBC.41-43 Taken together, TP53 is
mutated in a majority of TNBC cases and is therefore an attractive
candidate for antitumor therapies.

BRCA1/2
The BRCA1 and BRCA2 gene products are vital to the activation

and transcriptional regulation of DNA damage, control of the cell
cycle, and cellular proliferation and differentiation.89 More specif-
ically, BRCA1/2 proteins play an essential role in DNA double-
strand break repair by homologous recombination (HRR) and the
maintenance of DNA stability.90

Over 80% of hereditary BRCA1-mutated breast cancers are
classified as TNBC and/or BLBC, and approximately 15% TNBC
patients are carriers of a BRCA germ-line mutation (gBRCA).3,91-95 The
remaining sporadic TNBC cases frequently share certain characteristics
with BRCA1/2mutation carriers in HRR defects, sometimes collectively
termed BRCAness.59 This BRCAness status can involve the epigenetic
inactivation of BRCA1 by promoter methylation, which has been
associated with poor prognosis in terms of relapse-free survival and OS
after anthracycline- or taxane-based therapy.96 Breast cancers with
BRCA1mutations as well as BRCAness often express basal markers that
correspond with the BL1 subtype and therefore respond to neoadjuvant
anthracycline and taxane therapy.2,23,97 Interesting results were recently
published in the POSH study determining the effect of gBRCA on
breast cancer outcome after systemic therapy. OS at 10 years was 78%
in gBRCA carriers compared to 69% in BRCA-negative cases, suggesting
that BRCA mutation provided some survival advantage to their car-
riers.98 Better survival of gBRCA TNBC and probably also BRCAness
might be caused by better sensitivity of gBRCA carriers to chemotherapy
as a result of defects in HRR or higher immune activation.98-100

Moreover, patients with deficient BRCA1/2 function should be
more susceptible to DNA-damaging agents like platinum derivatives
and poly(ADP ribose) polymerase (PARP) inhibitors.44 The
Treating to New Targets (TNT) trial shown the double objective
response rate to carboplatin compared to docetaxel in metastatic
TNBC tumors carrying gBRCA mutations.101,102 High effectivity of
platinum-based therapy in metastatic gBRCA TNBC was also
demonstrated by other studies.45 Moreover, not only BRCA1/2
mutation carriers but also patients with advanced TNBC with
defects in the BRCA1/2 pathway (determined by higher values of
loss of heterozygosity score and large-scale state transitions score)
showed a positive response to platinum therapy in the TBCR009
study.45 Indeed, the TNT trial did not demonstrate better response
to carboplatin in patients with a high homologous recombination
deficiency score.101 Biomarkers of genomic instability that predict a
positive response to platinum-based therapy should therefore be
validated for a subset of TNBC tumors.103 In the neoadjuvant
setting, the role of gBRCA mutation in response to platinum-based
therapy is unclear. Several studies demonstrated higher responses in
gBRCA carriers; nevertheless, the GeparSixto study showed higher
responses in patients with wild-type BRCA.46,104-106

PARP inhibitors present another promising therapeutic tool.
PARP inhibition increases the occurrence of irreparable toxic DNA
double-strand breaks resulting in cell death in BRCA-mutated
patients. PARP inhibitors therefore effectively kill the tumor cells
through the principle of synthetic lethality. The PARP inhibitors
olaparib and rucaparib have been approved for the treatment of
advanced previously treated ovarian cancer with gBRCA. More
recently, olaparib was also approved by the US Food and Drug
Administration for treatment of metastatic HER2-negative breast
cancer with BRCA mutation previously treated with chemo-
therapy.107-111 Promising results with PARP inhibitor talazoparib
were shown in the EMBRACA study. Talazoparib therapy resulted
in significantly prolonged progression-free survival in advanced
HER2-negative breast cancer patients with gBRCA compared to
treatment of physician’s choice.112

PI3K Pathway
Dysregulation of the PI3K/AKT/mTOR pathway causes changes

in cell survival, differentiation, and/or proliferation that are
Clinical Breast Cancer October 2018 - e845



Genetic Markers in TNBC

e846

Author's Personal Copy
frequently observed during carcinogenesis.54 Increased signaling
through the PI3K/Akt/mTOR pathway is very common in all breast
cancer types, including TNBC.113 In basal-like tumors, alterations
in PTEN and INPP4B phosphatases are more common than
mutations in PIK3CA.35,54 PIK3CA mutations are associated with
ER positivity and therefore are more frequent in ER-positive breast
cancers (luminal and HER2-enriched subtypes).77,114

PTEN is an important negative regulator of the PI3K pathway.
Loss of PTEN expression has been shown to be significantly asso-
ciated with ER negativity as well as basal-like phenotype.115 Loss of
PTEN contributes to both rapid tumor cell proliferation and poor
prognosis in TNBC.55 The phosphatase INPP4B, another negative
regulator of the PI3K pathway, has been shown to be frequently lost
in ER-negative primary breast carcinomas. INPP4B loss is associ-
ated with high clinical grade, increased tumor size, loss of hormone
receptors, and aggressive basal-like breast cancers.36,116 In addition,
oncogenic mutations of PIK3CA, which encodes for a catalytic
subunit of PI3K (p110a), occur in about 10% of TNBC cases and
can further activate the PI3K pathway. Among the TNBC subtypes,
LAR shows the highest prevalence of PIK3CAmutations, and in this
way the simultaneous therapeutic targeting of AR and PIK3CA
could prove beneficial to patients.51 In addition to the known
TNBC cancer-related genes involved in PI3K pathway regulation,
the novel MAGI3-AKT3 translocation has been described. This
rearrangement occurs in about 7% of TNBC cases and leads to
constitutive AKT3 activation and hyperactivation of the PI3K
pathway.77

In TNBC, PI3K/AKT/mTOR pathway alterations occur
frequently and are promising therapeutic targets. Preclinical data
have demonstrated that TNBC tumors are more sensitive to com-
bination therapy.51-53 Clinical trials are currently evaluating the
potency of mTOR, PI3K, AKT, and mTOR/PI3K inhibitors for
treating TNBC alone or in combination with other therapies (eg,
cisplatin, PARP, and AR inhibitors).114

Tyrosine Kinase Receptors
Tyrosine kinase receptors from the EGFR, FGFR (fibroblast

growth factor receptor), and VEGFR (vascular endothelial growth
factor receptor) families have been reported to be potential clinical
targets for treating TNBC.117,118 The tyrosine kinase receptor
EGFR (HER1) mediates cell proliferation, angiogenesis, and
metastasis as well as the inhibition of apoptosis by transducing an
extracellular signal through a kinase cascade to ultimately initiate the
transcription of specific genes. While EGFR overexpression has
been described in approximately 60% of TNBC cases, EGFR
amplification or high copy number has been reported in only 5% to
30% of cases. Moreover, EGFR mutations were found to be rare,
occurring in about 11% of samples.56,57 Studies of Asian pop-
ulations did not find a correlation between EGFR expression and
either increased EGFR copy number or EGFR mutations.57,119

Nevertheless, a recent study reported EGFR copy number to
correlate with EGFR overexpression and to be associated with poor
clinical outcome in TNBC. EGFR overexpression is also influenced
by factors other than genomic changes, and EGFR copy number
status seems to predict the response of TNBC patients to anti-
EGFR therapy.58 A number of clinical trials have evaluated the
efficacy of tyrosine kinase inhibitors as well as monoclonal
- Clinical Breast Cancer October 2018
antibodies.117 However, the results from these clinical trials, which
tested EGFR tyrosine kinase inhibitors alone or in combination
with chemotherapy, have so far been disappointing.117 Similarly,
clinical trials investigating anti-EGFR monoclonal antibodies in
monotherapy or combination therapy have not yet provided any
promising results.120-123 Despite predominantly unsuccessful
studies, a small proportion of TNBC patients have disease that
responds positively to anti-EGFR therapy. Therefore, identification
of patients with EGFR activations who may profit from anti-EGFR
therapy is crucial.

FGF receptors mediate proliferation, survival, migration, and
differentiation. As such, they could be a promising target for
treating a subset of TNBC patients. Amplifications of FGFR1 or
FGFR2, with respective frequencies of 9% and 4% in TNBC, may
act as driver mutations, whereas mutations in FGFR genes are less
common in TNBC.59-61 Two studies have shown that FGFR2
amplification leads to constitutive activation of the receptor in
TNBC cell lines, and that this subset of cells is sensitive to the
FGFR ATP-competitive inhibitor PD173074.59,63 Cell lines with
FGFR1 amplifications were shown to be sensitive to the FGFR
ATP-competitive inhibitor brivanib.62 These results concerning
FGFRs, along with the fact that alterations in FGFR genes occur in
more than 10% of TNBC cases, make this family of tyrosine kinase
receptors an attractive therapeutic target. Ongoing clinical trials will,
we hope, clarify the effectiveness of FGFR inhibitors in breast
cancer patients.

The VEGFR family has also been explored as a potential thera-
peutic target because it plays an essential role in angiogenesis, which
affects cancer development, invasion, and metastasis.64 Even though
VEGFR amplifications or mutations are rare in TNBC, a number of
clinical trials have confirmed that the addition of bevacizumab to
chemotherapy significantly elevates pCR rates in TNBC pa-
tients.28,65,66 Higher pCR rates occur in TNBC patients treated
with bevacizumab; interestingly, the best responses to bevacizumab
were associated with high VEGFR1 levels.67 The effect of the
multitarget tyrosine kinase receptor inhibitor sunitinib on TNBC
has been evaluated in several studies, but this inhibitor was not
found to be any more effective than other previously reported
therapeutic approaches.124,125

Androgen Receptor
AR, as well as ER and PR, belongs to the nuclear steroid hor-

mone receptor family.126 AR plays an important role in cell
signaling through the Wnt pathway and regulates genes involved in
metastasis,68 FOXA1, PTEN, and p53 along with other cell-cycle
regulators, and the PI3K/AKT/mitogen-activated protein kinase
signaling pathway.127 AR expression has been found in approxi-
mately 70% of breast cancers, and it is associated with ER posi-
tivity.47,128 In breast cancer, AR positivity is more common in older
women and is associated with lower stage, nuclear grade, and risk of
lymph node involvement as well as smaller tumor size at diagnosis,
decreased risk of recurrence, and better OS and disease-free
survival.69,129,130 In TNBC, AR positivity is present in 13% to
37% of cases and is associated with LAR subtype and older age at
presentation.130,131 The prognostic significance of AR positivity is
controversial; AR positivity has been associated with both favorable
and poor prognoses in previous studies.69,70,131-133 AR-positive
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TNBC has a lower Ki-67 index than AR-negative TNBC and could
therefore be less sensitive to chemotherapy,134 which is in accor-
dance with findings that the LAR subtype has lower pCR rates
relative to other TNBC subtypes.23

Preclinical in vitro and xenograft studies have demonstrated that
cell line models of LAR subtype are partially dependent on AR
signaling.22,135 Small interfering RNA knockdown and pharmaco-
logic inhibition of AR both substantially decreased cell viability and
tumor growth. Moreover, all analyzed LAR cell lines showed an
activating mutation in the kinase domain of PIK3CA (H1047R)
and were therefore sensitive to PI3K inhibitors.2 In AR-positive
TNBC, PIK3CA mutations were reported in approximately 40%
of cases.51 Studies using in vitro experiments and xenograft models
have shown that the treatment of both LAR and non-LAR TNBC
subtypes with the AR inhibitors enzalutamide and bicalutamide
reduces proliferation, anchorage-independent growth, migration,
and invasion, and increases apoptosis.71,72 Therefore, a positive
response to AR antagonists is probably not limited to the LAR
TNBC subtype. However, the TBCRC011 study showed a rela-
tively weak response, with a 6-month clinical benefit rate of 19% for
bicalutamide in AR-positive patients compared to 18% in the
intention-to-treat population.136 In a MDV3100-11 study, enza-
lutamide showed higher clinical activity, with a 6-month clinical
benefit rate of 28%, for AR-positive patients compared to 20% in
the intention-to-treat population.137

Future studies should focus on elucidating the mechanisms of AR
therapy resistance and how to select patients who will show the
optimal response. Other therapeutic approaches, such as CYP17
(cytochrome P450 family 17 subfamily a member 1) inhibitors or
the combination of AR inhibitors with CDK4/CDK6 (cyclin-
dependent kinase) inhibitors, PI3K inhibitors or neoadjuvant
chemotherapy, are still being investigated.130

The therapeutic value of screening for AR positivity is that this is
an easily detectable marker than can identify subgroups of TNBC
patients who will derive minimal clinical benefit from standard
chemotherapy. AR-dependent TNBC patients could benefit from
targeted therapy based on AR antagonists alone or in combination
with other chemical agents.

BCL2 Gene
B-cell lymphoma 2 (BCL2) is a mitochondrial protein known for its

antiapoptotic and oncogenic effects. BCL2 exerts inhibitory effects on
cell growth and proliferation and DNA damage, resulting in increased
genetic instability.138,139 Many studies have proven BCL2 expression
to be a promising prognostic and predictive marker, especially in
hormone receptorepositive, node-negative breast cancer.140,141 BCL2
expression is directly up-regulated by estrogens and therefore
commonly shows elevated levels in ER-positive breast cancers.

The role of BCL2 in the context of TNBC has not yet been well
established. BCL2 positivity was found to be a positive prognostic
factor in TNBC, as the ER�BCL2þ group demonstrated a better
prognosis than the ERþBCL2� group.73 Moreover, BCL2 positivity
was shown to be a predictor of response to neoadjuvant and adjuvant
anthracycline-based chemotherapy. The absence of BCL2 expression
in prechemotherapy TNBC samples was associated with a higher
probability of pCR to neoadjuvant doxorubicin-based chemotherapy,
and the lack of BCL2 expression was also found to be an independent
predictor of pCR.74 Similarly, in an adjuvant setting, low BCL2
expression was associated with better outcome when TNBC was
treated with anthracycline-based chemotherapy.75 In addition,
heightened BCL2 expression seems to predict response to cyclophos-
phamide, methotrexate, and 5-fluorouracil treatment.76 The mecha-
nism of this response is not entirely clear, but it may be influenced by
expression changes in genes associated with BCL2 levels—for example,
altered expression of HER3 (human epidermal growth factor receptor
3), MDM4 (Mdm2-like P53-binding protein), and p27 proteins.142

The addition of BCL2 to the screening panel in clinical practice
would be simple and could provide important prognostic and pre-
dictive information about the TNBC patient.

Cyclin-Dependent Kinases
CDKs and cyclins play key roles in cell-cycle regulation and are

altered in almost all cancer types. Altered expression of cyclin D, cyclin
E, CDK4/6, CDK2, and others was observed in TNBC, and CDK
inhibition therapy therefore seems to be promising strategy in
TNBC.81,143,144 More than 10 CDK inhibitors are evaluating in
ongoing clinical trials; the most promising are ribociclib, palbociclib,
abemaciclib, and dinaciclib. The CDK4/6 inhibitors ribociclib and
palbociclib have been already approved for treatment of advanced
breast cancer patients with hormone receptor positivity and HER2
negativity.145,146 In TNBC, the LAR subgroup was found to be sen-
sitive to CDK4/6 inhibition (palbociclib/ribociclib). Moreover, CDK4/
6 inhibitors were synergistic with PI3K inhibitors in TNBC cell lines
with PIK3CAmutation.147 Recently, inhibition of CDK4/6 was found
to block breast tumor metastasis in TNBC xerograph model. Palbo-
ciclib inhibition did not affect growth of primary tumor but never-
theless significantly inhibited the spread of TNBC to distant organs
through destabilization of the SNAIL1 protein.148 Currently, palboci-
clib and ribociclib in combination with bicalutamide (AR antagonist)
are being tested for the treatment of advanced AR-positive TNBC.149

Abemaciclib has a different toxicity profile and is being tested in
advanced TNBC with high RB1 expression as a single agent.149

Dinaciclib (a pan-CDK inhibitor) was recently shown to have activ-
ity against TNBC both in vitro and in vivo.150 Dinaciclib failed in
combination with epirubicin because of substantial toxicity and is
currently being tested in combination with pembrolizumab.149,151

Conclusion
TNBC encompasses a complex group of heterogeneous diseases

characterized by various genetic alterations and a lack of validated
biomarkers. Current research is focused on identifying genes that
may serve as therapeutic targets, prognostic markers, or predictors of
therapeutic response and are common in all or particular TNBC
subtypes. High-throughput analysis tools such as sequencing and
microarray technology have the potential to elucidate the nature of
TNBC; however, results of these technologies rarely have thera-
peutic impact. Well-defined and extensive data sets are required for
clinical validation of founded biomarkers. To date, several prom-
ising markers have been described, but they still lack validation with
the stringent criteria of clinical studies. The heterogeneity of TNBC
is also evident in its treatment. The different subtypes differ in both
proliferative activity and response to conventional chemotherapy; as
such, classic therapeutic approaches should consider which subtype
is being targeted until personalized options become available.
Clinical Breast Cancer October 2018 - e847
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